
COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING
THEOREM

A metric space (M,d) is a set M with a metric d(x, y) ≥ 0 , x, y ∈M that has the properties

d(x, y) = d(y, x) , x, y ∈M
d(x, y) ≤ d(x, z) + d(z, y) , x, y, z ∈M (triangle inequality)

and
d(x, y) = 0 ⇐⇒ x = y

Most of you have seen these definitions and so I will not go into any details.
A sequence of points xn ∈ M is a Cauchy Sequence if for any ε > 0 there exists N(ε)

such that
d(xn, xm) < ε

for all n,m > N(ε). Accordingly we say that a complete metric space is complete if every
Cauchy Sequence converges to some element x ∈ M , i.e., for every ε > 0 there exists N(ε)
such that

d(xn, x) < ε

for all n > N(ε).
A function f : M →M is a contraction if there exists a constant 0 ≤ α < 1 such that for

all x, y ∈M
d(f(x), f(y)) ≤ αd(x, y) .

A simple consequence of these definitions is the Banach fixed point theorem:

Theorem 0.1. Let (M,d) be a complete metric space and f : M → M a contraction. Then
the equation

x = f(x)

has a unique solution x. Moreover, if x0 ∈ M is any initial point and xn+1 = f(xn), n =
0, 1, . . . , then

d(x, xn) ≤ αn

1− α
d(f(x0), x0)

Proof. If x and y are two solutions then

d(x, y) = d(f(x), f(y)) ≤ αd(x, y)

and hence d(x, y) = 0 and therefore x = y. Pick any n > m and use the triangle inequality to
find

d(xn, xm) ≤
n−1∑
k=m

d(xk+1, xk)

Moreover,
d(xk+1, xk) = d(f(xk), f(xk−1)) ≤ αd(xk, xk−1) ≤ αkd(f(x0), x0)

and so
n−1∑
k=m

d(xk+1, xk) ≤
n−1∑
k=m

αkd(f(x0), x0) = αm
1− αn−m

1− α
d(f(x0), x0) ≤

αm

1− α
d(f(x0), x0) .
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Hence

d(xn, xm) ≤ αm

1− α
d(f(x0), x0)

which proves that the sequence xn is a Cauchy sequence. The completeness of (M,d) guaran-
tees that xn has a limit x. We have to show that x solves the equation. Pick n ≥ 1 arbitrary
and use that

d(f(x), x) ≤ d(f(x), xn) + d(xn, x) = d(f(x), f(xn−1)) + d(xn, x)

which is bounded above by

αd(x, xn−1) + d(xn, x) ≤ 2αn

1− α
d(f(x0), x0) .

Because n is arbitrary d(f(x), x) is smaller than any positive number and hence equal to 0. �

Example 1: For a simple example of a metric space that is not necessarily complete
consider any set S ⊂ Rd and consider the Euclidean distance

d(x, y) = |x− y| =

√√√√ d∑
j=1

(xj − yj)2 .

It is obvious that d(x, y) = d(y, x) ≥ 0 for all x, y ∈ S. Further

0 = d(x, y) = |x− y|
implies that x and y have the same components and hence are equal. The triangle inequality
follows from the following facts:

Schwarz’ inequality

x · y :=
d∑
j=1

xjyj ≤

√√√√ d∑
j=1

x2j

√√√√ d∑
j=1

y2j = |x||y|

Minkowski’s inequality
|x+ y| ≤ |x|+ |y|

This follows easily from Schwarz’ inequality. Thus, we find that for any x, y, z ∈ S
d(x, y) = |x− y| = |x− z + z − y| ≤ |x− z|+ |z − y| = d(x, z) + d(z, y) .

In this context, the following is an interesting application of the contraction mapping the-
orem. We start first with an easy case. A map is called Lipschitz, if there exists a constant
L such that for all x1, x2

|f(x− 1)− f(x2)| ≤ L|x1 − x2| .
Thus, a contraction is a Lipschitz map with Lipschitz constant L < 1.

Given a map
f : Rd → Rd

and consider the map
h : Rd → Rd
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given by h(x) = x+ f(x). Assume that f is a contraction, i.e.,

|f(x)− f(y)| ≤ α|x− y|
for some constant α < 1. We claim that h has an inverse which is also a contraction

To see this we have to show two things.
a) h is injective.
This follows from the fact that

x1 + f(x1) = x2 + f(x2)

entails that
|x1 − x2| = |f(x2)− f(x1)| ≤ α|x1 − x2|

which yields x1 = x2.
b) Next we have to show that h is onto. For any given y ∈ Rd we consider the equation

y = x+ f(x)

which we rewrite as
x = y − f(x) := φ(x) .

The map φ is a contraction

|φ(x1)− φ(x2)| = |f(x1)− f(x2)| ≤ α|x1 − x2|
and hence there exists a unique fixed point a ∈ Rd, i.e.,

a = φ(a) = y − f(a) .

Hence h has an inverse, which we denote by g : Rd → Rd. To show that g is Lipschitz we
write yi = h(xi), i = 1, 2 and note that

|x1 − x2| ≤ |y1 − y2|+ |f(x1)− f(x2)| ≤ |y1 − y2|+ α|x1 − x2|
so that

|x1 − x2| ≤
1

1− α
|y1 − y2|

which shows that g is Lipschitz with Lipschitz constant 1
1−α . This argument can be adapted

to a more general situation.

Theorem 0.2. Imagine an open set S ⊂ Rd and let

f : S → Rd

be a contraction with contraction constant α < 1. Then for the map

h : S → h(S) , h(x) = x+ f(x)

h(S) is open and the map h has an inverse g : h(S) → S which is Lipschitz with Lipschitz
constant 1

1−α .

Proof. The fact that h is injective has the same proof as before. A priori we do not know
much about the set h(S). We prove that this set is open in Rd. Pick any y0 ∈ h(S). Then, by
definition, there exists a point x0 ∈ S so that h(x0) = y0. To arrange things in a convenient
way we set

U(x) = h(x0 + x)− y0 = x+ f(x0 + x) + x0 − y0 = x+ V (x)

so that U(0) = 0 i.e., U fixes the origin. Hence

U : S − x0 → h(S)− y0 ,
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and our goal is to show that U(S − x0) is an open set. Pick r > 0 so that the closed ball
Br(0) ⊂ S − x0 and note that

|V (x)| = |V (x)− V (0)| = |f(x+ x0)− f(x0)| ≤ α|x|

so that V maps the ball Br(0) into the ball Bαr(0) ⊂ Br(0). Such a radius r exists, because
S − x0 is open. Indeed pick r′ so that the open ball Br′(0) ⊂ S − x0 and pick any 0 < r < r′

which assures that Br(0) ⊂ S − x0. Hence, V is a map of the metric space Br(0) into itself.
Moreover, V is a contraction on Br(0). Indeed for x1, x2 ∈ Br(0) we have that

|V (x1)− V (x2)| = |f(x1 + x0)− f(x2 + x0)| ≤ α|x1 − x2| .

If we can show that any point y ∈ Br(0) is of the form U(z) for some z ∈ Br(0) we are done.
Thus, we have to find z ∈ Br(0) so that

y = z + V (z)

i.e., the map y − V (x) has a fixed point in Br(0). Note that Br(0) is closed and hence is
a complete metric space. Thus, by the fixed point theorem there exists z ∈ Br(0) with the
desired properties. Denoting the inverse by g : h(S) → S we have for y1, y2 ∈ h(S), setting
xi = g(yi), i = 1, 2,

|x1 − x2| = |(y1 − f(x1))− (y2 − f(x2))| ≤ |y1 − y2|+ |f(x1)− f(x2)| ≤ |y1 − y2|+ α|x1 − x2|
so that

|x1 − x2| ≤
1

1− α
|y1 − y2| ,

which shows that g is a Lipschitz map with Lipschitz constant 1
1−α . �

A consequence of this Theorem is the inverse function theorem.

Theorem 0.3. Let S ⊂ Rd be an open set and F : S → Rd a map that is continuously
differentiable. Assume that the Jacobi matrix DF (x0), x0 ∈ S, is invertible. Then there exists
an open set U ⊂ Rd with x0 ∈ U such that F (U) is open and there exists a map g : F (U)→ U
such that g ◦ F = id. Moreover, g is differentiable at F (x0) and we have that

Dg(F (x0)) = DF (x0)
−1

Proof. We have to construct U . First we normalize things conveniently. By replacing F (x) by
DF (x0)

−1F (x) we may assume that DF (x0) = I. Further, replacing F (x) by F (x+x0)−F (x0)
we may assume that x0 = 0 and F (x0) = 0. Let’s denote this renormalized map by h. Since
h is continuously differentiable we have that

h(x)− h(0) =

∫ 1

0

d

dt
h(tx)dt =

∫ 1

0

Dh(tx)dt · x

which leads to

h(x) = x+ f(x)

where

f(x) :=

∫ 1

0

(Dh(tx)− I)dt · x .

It is convenient to set

Mi,j(x) = (Dh(x)− I)i,j .
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Since Dh(x) is continuous at 0 we can find r > 0 so that

max
i,j

sup
|x|≤3r

|Mi,j(x)| ≤ 1

2d
.

Hence we have that

|f(x)| =

√√√√∑
i

(
∑
j

∫ t

0

Mi,j(tx)dtxj)2 ≤
1

2d

√∑
i

(
∑
j

|xj|)2 =
1

2d

√
d(
∑
j

|xj|)2 ≤
1

2d

√
d2(

∑
j

|xj|2) =
1

2
|x|

and we see that f(B2r(0)) ⊂ Br(0) and in particular f(Br(0)) ⊂ Br(0). Further for x1, x2 ∈
Br(0) we have that

f(x1)− f(x2) = h(x1)− h(x2)− x1 + x2 =

∫ 1

0

[Dh((1− t)x2 + tx1)− I] dt(x1 − x2)

and
|(1− t)x2 + tx1| ≤ |x2|+ t|x1 − x2| ≤ 3r

and hence

|f(x1)− f(x2)| ≤
1

2
|x1 − x2| .

Thus, f : Br(0) → Br(0) is a contraction and therefore V = f(Br(0)) is open and h : V →
Br(0) has a Lipschitz continuous inverse, which we denote again by g. To see that g is
differentiable at 0 we shall show that

|g(x)− x| = o(|x|) .
This implies that g is differentiable at 0 and Dg(0) = I as it should be. Pick any sequence
xn → 0, set yn = g(xn). Note that yn → 0 as well and we compute

|g(xn)− xn|
|xn|

=
|yn − h(yn)

|yn|
|g(xn)|
|xn|

.

Because g(0) = 0, we have that
|g(xn)|
|xn|

≤ 2

and hence

lim
n→∞

|g(xn)− xn|
|xn|

= 0 .
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