COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM

A metric space (M, d) is a set M with a metric $d(x, y) \geq 0, x, y \in M$ that has the properties

$$
\begin{gathered}
d(x, y)=d(y, x), x, y \in M \\
d(x, y) \leq d(x, z)+d(z, y), x, y, z \in M \text { (triangle inequality) }
\end{gathered}
$$

and

$$
d(x, y)=0 \Longleftrightarrow x=y
$$

Most of you have seen these definitions and so I will not go into any details.
A sequence of points $x_{n} \in M$ is a Cauchy Sequence if for any $\varepsilon>0$ there exists $N(\varepsilon)$ such that

$$
d\left(x_{n}, x_{m}\right)<\varepsilon
$$

for all $n, m>N(\varepsilon)$. Accordingly we say that a complete metric space is complete if every Cauchy Sequence converges to some element $x \in M$, i.e., for every $\varepsilon>0$ there exists $N(\varepsilon)$ such that

$$
d\left(x_{n}, x\right)<\varepsilon
$$

for all $n>N(\varepsilon)$.
A function $f: M \rightarrow M$ is a contraction if there exists a constant $0 \leq \alpha<1$ such that for all $x, y \in M$

$$
d(f(x), f(y)) \leq \alpha d(x, y)
$$

A simple consequence of these definitions is the Banach fixed point theorem:
Theorem 0.1. Let (M, d) be a complete metric space and $f: M \rightarrow M$ a contraction. Then the equation

$$
x=f(x)
$$

has a unique solution \bar{x}. Moreover, if $x_{0} \in M$ is any initial point and $x_{n+1}=f\left(x_{n}\right), n=$ $0,1, \ldots$, then

$$
d\left(\bar{x}, x_{n}\right) \leq \frac{\alpha^{n}}{1-\alpha} d\left(f\left(x_{0}\right), x_{0}\right)
$$

Proof. If \bar{x} and \bar{y} are two solutions then

$$
d(\bar{x}, \bar{y})=d(f(\bar{x}), f(\bar{y})) \leq \alpha d(\bar{x}, \bar{y})
$$

and hence $d(\bar{x}, \bar{y})=0$ and therefore $\bar{x}=\bar{y}$. Pick any $n>m$ and use the triangle inequality to find

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{k=m}^{n-1} d\left(x_{k+1}, x_{k}\right)
$$

Moreover,

$$
d\left(x_{k+1}, x_{k}\right)=d\left(f\left(x_{k}\right), f\left(x_{k-1}\right)\right) \leq \alpha d\left(x_{k}, x_{k-1}\right) \leq \alpha^{k} d\left(f\left(x_{0}\right), x_{0}\right)
$$

and so

$$
\sum_{k=m}^{n-1} d\left(x_{k+1}, x_{k}\right) \leq \sum_{k=m}^{n-1} \alpha^{k} d\left(f\left(x_{0}\right), x_{0}\right)=\alpha^{m} \frac{1-\alpha^{n-m}}{1-\alpha} d\left(f\left(x_{0}\right), x_{0}\right) \leq \frac{\alpha^{m}}{1-\alpha} d\left(f\left(x_{0}\right), x_{0}\right)
$$

Hence

$$
d\left(x_{n}, x_{m}\right) \leq \frac{\alpha^{m}}{1-\alpha} d\left(f\left(x_{0}\right), x_{0}\right)
$$

which proves that the sequence x_{n} is a Cauchy sequence. The completeness of (M, d) guarantees that x_{n} has a limit \bar{x}. We have to show that \bar{x} solves the equation. Pick $n \geq 1$ arbitrary and use that

$$
d(f(\bar{x}), \bar{x}) \leq d\left(f(\bar{x}), x_{n}\right)+d\left(x_{n}, \bar{x}\right)=d\left(f(\bar{x}), f\left(x_{n-1}\right)\right)+d\left(x_{n}, \bar{x}\right)
$$

which is bounded above by

$$
\alpha d\left(\bar{x}, x_{n-1}\right)+d\left(x_{n}, \bar{x}\right) \leq \frac{2 \alpha^{n}}{1-\alpha} d\left(f\left(x_{0}\right), x_{0}\right) .
$$

Because n is arbitrary $d(f(\bar{x}), \bar{x})$ is smaller than any positive number and hence equal to 0 .

Example 1: For a simple example of a metric space that is not necessarily complete consider any set $S \subset \mathbb{R}^{d}$ and consider the Euclidean distance

$$
d(x, y)=|x-y|=\sqrt{\sum_{j=1}^{d}\left(x_{j}-y_{j}\right)^{2}}
$$

It is obvious that $d(x, y)=d(y, x) \geq 0$ for all $x, y \in S$. Further

$$
0=d(x, y)=|x-y|
$$

implies that x and y have the same components and hence are equal. The triangle inequality follows from the following facts:

Schwarz' inequality

$$
x \cdot y:=\sum_{j=1}^{d} x_{j} y_{j} \leq \sqrt{\sum_{j=1}^{d} x_{j}^{2}} \sqrt{\sum_{j=1}^{d} y_{j}^{2}}=|x||y|
$$

Minkowski's inequality

$$
|x+y| \leq|x|+|y|
$$

This follows easily from Schwarz' inequality. Thus, we find that for any $x, y, z \in S$

$$
d(x, y)=|x-y|=|x-z+z-y| \leq|x-z|+|z-y|=d(x, z)+d(z, y)
$$

In this context, the following is an interesting application of the contraction mapping theorem. We start first with an easy case. A map is called Lipschitz, if there exists a constant L such that for all x_{1}, x_{2}

$$
\left|f(x-1)-f\left(x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|
$$

Thus, a contraction is a Lipschitz map with Lipschitz constant $L<1$.
Given a map

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}
$$

and consider the map

$$
h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}
$$

given by $h(x)=x+f(x)$. Assume that f is a contraction, i.e.,

$$
|f(x)-f(y)| \leq \alpha|x-y|
$$

for some constant $\alpha<1$. We claim that h has an inverse which is also a contraction
To see this we have to show two things.
a) h is injective.

This follows from the fact that

$$
x_{1}+f\left(x_{1}\right)=x_{2}+f\left(x_{2}\right)
$$

entails that

$$
\left|x_{1}-x_{2}\right|=\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq \alpha\left|x_{1}-x_{2}\right|
$$

which yields $x_{1}=x_{2}$.
b) Next we have to show that h is onto. For any given $y \in \mathbb{R}^{d}$ we consider the equation

$$
y=x+f(x)
$$

which we rewrite as

$$
x=y-f(x):=\phi(x) .
$$

The map ϕ is a contraction

$$
\left|\phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right|=\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq \alpha\left|x_{1}-x_{2}\right|
$$

and hence there exists a unique fixed point $a \in \mathbb{R}^{d}$, i.e.,

$$
a=\phi(a)=y-f(a) .
$$

Hence h has an inverse, which we denote by $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. To show that g is Lipschitz we write $y_{i}=h\left(x_{i}\right), i=1,2$ and note that

$$
\left|x_{1}-x_{2}\right| \leq\left|y_{1}-y_{2}\right|+\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq\left|y_{1}-y_{2}\right|+\alpha\left|x_{1}-x_{2}\right|
$$

so that

$$
\left|x_{1}-x_{2}\right| \leq \frac{1}{1-\alpha}\left|y_{1}-y_{2}\right|
$$

which shows that g is Lipschitz with Lipschitz constant $\frac{1}{1-\alpha}$. This argument can be adapted to a more general situation.
Theorem 0.2. Imagine an open set $S \subset \mathbb{R}^{d}$ and let

$$
f: S \rightarrow \mathbb{R}^{d}
$$

be a contraction with contraction constant $\alpha<1$. Then for the map

$$
h: S \rightarrow h(S), h(x)=x+f(x)
$$

$h(S)$ is open and the map h has an inverse $g: h(S) \rightarrow S$ which is Lipschitz with Lipschitz constant $\frac{1}{1-\alpha}$.
Proof. The fact that h is injective has the same proof as before. A priori we do not know much about the set $h(S)$. We prove that this set is open in \mathbb{R}^{d}. Pick any $y_{0} \in h(S)$. Then, by definition, there exists a point $x_{0} \in S$ so that $h\left(x_{0}\right)=y_{0}$. To arrange things in a convenient way we set

$$
U(x)=h\left(x_{0}+x\right)-y_{0}=x+f\left(x_{0}+x\right)+x_{0}-y_{0}=x+V(x)
$$

so that $U(0)=0$ i.e., U fixes the origin. Hence

$$
U: S-x_{0} \rightarrow h(S)-y_{0},
$$

and our goal is to show that $U\left(S-x_{0}\right)$ is an open set. Pick $r>0$ so that the closed ball $\bar{B}_{r}(0) \subset S-x_{0}$ and note that

$$
|V(x)|=|V(x)-V(0)|=\left|f\left(x+x_{0}\right)-f\left(x_{0}\right)\right| \leq \alpha|x|
$$

so that V maps the ball $\bar{B}_{r}(0)$ into the ball $\bar{B}_{\alpha r}(0) \subset B_{r}(0)$. Such a radius r exists, because $S-x_{0}$ is open. Indeed pick r^{\prime} so that the open ball $B_{r^{\prime}}(0) \subset S-x_{0}$ and pick any $0<r<r^{\prime}$ which assures that $\bar{B}_{r}(0) \subset S-x_{0}$. Hence, V is a map of the metric space $\bar{B}_{r}(0)$ into itself. Moreover, V is a contraction on $\bar{B}_{r}(0)$. Indeed for $x_{1}, x_{2} \in \bar{B}_{r}(0)$ we have that

$$
\left|V\left(x_{1}\right)-V\left(x_{2}\right)\right|=\left|f\left(x_{1}+x_{0}\right)-f\left(x_{2}+x_{0}\right)\right| \leq \alpha\left|x_{1}-x_{2}\right|
$$

If we can show that any point $y \in \bar{B}_{r}(0)$ is of the form $U(z)$ for some $z \in \bar{B}_{r}(0)$ we are done. Thus, we have to find $z \in \bar{B}_{r}(0)$ so that

$$
y=z+V(z)
$$

i.e., the map $y-V(x)$ has a fixed point in $\bar{B}_{r}(0)$. Note that $\bar{B}_{r}(0)$ is closed and hence is a complete metric space. Thus, by the fixed point theorem there exists $z \in \bar{B}_{r}(0)$ with the desired properties. Denoting the inverse by $g: h(S) \rightarrow S$ we have for $y_{1}, y_{2} \in h(S)$, setting $x_{i}=g\left(y_{i}\right), i=1,2$,
$\left|x_{1}-x_{2}\right|=\left|\left(y_{1}-f\left(x_{1}\right)\right)-\left(y_{2}-f\left(x_{2}\right)\right)\right| \leq\left|y_{1}-y_{2}\right|+\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq\left|y_{1}-y_{2}\right|+\alpha\left|x_{1}-x_{2}\right|$
so that

$$
\left|x_{1}-x_{2}\right| \leq \frac{1}{1-\alpha}\left|y_{1}-y_{2}\right|
$$

which shows that g is a Lipschitz map with Lipschitz constant $\frac{1}{1-\alpha}$.
A consequence of this Theorem is the inverse function theorem.
Theorem 0.3. Let $S \subset \mathbb{R}^{d}$ be an open set and $F: S \rightarrow \mathbb{R}^{d}$ a map that is continuously differentiable. Assume that the Jacobi matrix $D F\left(x_{0}\right), x_{0} \in S$, is invertible. Then there exists an open set $U \subset \mathbb{R}^{d}$ with $x_{0} \in U$ such that $F(U)$ is open and there exists a map $g: F(U) \rightarrow U$ such that $g \circ F=i d$. Moreover, g is differentiable at $F\left(x_{0}\right)$ and we have that

$$
D g\left(F\left(x_{0}\right)\right)=D F\left(x_{0}\right)^{-1}
$$

Proof. We have to construct U. First we normalize things conveniently. By replacing $F(x)$ by $D F\left(x_{0}\right)^{-1} F(x)$ we may assume that $D F\left(x_{0}\right)=I$. Further, replacing $F(x)$ by $F\left(x+x_{0}\right)-F\left(x_{0}\right)$ we may assume that $x_{0}=0$ and $F\left(x_{0}\right)=0$. Let's denote this renormalized map by h. Since h is continuously differentiable we have that

$$
h(x)-h(0)=\int_{0}^{1} \frac{d}{d t} h(t x) d t=\int_{0}^{1} D h(t x) d t \cdot x
$$

which leads to

$$
h(x)=x+f(x)
$$

where

$$
f(x):=\int_{0}^{1}(D h(t x)-I) d t \cdot x
$$

It is convenient to set

$$
M_{i, j}(x)=(D h(x)-I)_{i, j} .
$$

Since $D h(x)$ is continuous at 0 we can find $r>0$ so that

$$
\max _{i, j} \sup _{|x| \leq 3 r}\left|M_{i, j}(x)\right| \leq \frac{1}{2 d} .
$$

Hence we have that

$$
|f(x)|=\sqrt{\sum_{i}\left(\sum_{j} \int_{0}^{t} M_{i, j}(t x) d t x_{j}\right)^{2}} \leq \frac{1}{2 d} \sqrt{\sum_{i}\left(\sum_{j}\left|x_{j}\right|\right)^{2}}=\frac{1}{2 d} \sqrt{d\left(\sum_{j}\left|x_{j}\right|\right)^{2}} \leq \frac{1}{2 d} \sqrt{d^{2}\left(\sum_{j}\left|x_{j}\right|^{2}\right)}=\frac{1}{2}|x|
$$

and we see that $f\left(B_{2 r}(0)\right) \subset B_{r}(0)$ and in particular $f\left(\bar{B}_{r}(0)\right) \subset \bar{B}_{r}(0)$. Further for $x_{1}, x_{2} \in$ $B_{r}(0)$ we have that

$$
f\left(x_{1}\right)-f\left(x_{2}\right)=h\left(x_{1}\right)-h\left(x_{2}\right)-x_{1}+x_{2}=\int_{0}^{1}\left[D h\left((1-t) x_{2}+t x_{1}\right)-I\right] d t\left(x_{1}-x_{2}\right)
$$

and

$$
\left|(1-t) x_{2}+t x_{1}\right| \leq\left|x_{2}\right|+t\left|x_{1}-x_{2}\right| \leq 3 r
$$

and hence

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq \frac{1}{2}\left|x_{1}-x_{2}\right|
$$

Thus, $f: \bar{B}_{r}(0) \rightarrow \bar{B}_{r}(0)$ is a contraction and therefore $V=f\left(B_{r}(0)\right)$ is open and $h: V \rightarrow$ $\bar{B}_{r}(0)$ has a Lipschitz continuous inverse, which we denote again by g. To see that g is differentiable at 0 we shall show that

$$
|g(x)-x|=o(|x|) .
$$

This implies that g is differentiable at 0 and $D g(0)=I$ as it should be. Pick any sequence $x_{n} \rightarrow 0$, set $y_{n}=g\left(x_{n}\right)$. Note that $y_{n} \rightarrow 0$ as well and we compute

$$
\frac{\left|g\left(x_{n}\right)-x_{n}\right|}{\left|x_{n}\right|}=\frac{\mid y_{n}-h\left(y_{n}\right)}{\left|y_{n}\right|} \frac{\left|g\left(x_{n}\right)\right|}{\left|x_{n}\right|} .
$$

Because $g(0)=0$, we have that

$$
\frac{\left|g\left(x_{n}\right)\right|}{\left|x_{n}\right|} \leq 2
$$

and hence

$$
\lim _{n \rightarrow \infty} \frac{\left|g\left(x_{n}\right)-x_{n}\right|}{\left|x_{n}\right|}=0
$$

