
THE THEOREM OF ARZELÁ AND ASCOLI

As usual we endow C[a, b] with the maximum norm. A subset M ⊂ C[a, b] of functions is
called equicontinuous family if for any ε > 0 there exists δ > 0 sucht that for all x, y with
|x − y| < δ and all f ∈ M it follows that |f(x) − f(y)| < ε. Note that δ depends only on ε
and not on f ∈ M and not on x, as long as |x − y| < δ. Often this is also called uniform
equicontinuity. Recall that a set M ⊂ C[a, b] is compact if any bounded sequence in M has
a subsequence that converges to some f in C[a, b].

Theorem 0.1 (Arzelá-Ascoli). A subset M ⊂ C[a, b] is compact if and only if is a bounded
and equicontinuous family.

Proof. Enumerate the rational points in the interval [a, b] and denote this set {r1, r2, r3, . . . }
by Q. The sequence fn(r1) is bounded and hence it has a convergent subsequence f

(1)
n (r1).

The sequence f
(1)
n (r2) is again bounded and hence has a convergent subsequence f

(2)
n (r2).

The sequence f
(2)
n (r3) is bounded and hence has a convergent subsequence f

(3)
n (r3) etc. Now

consider the sequence f
(n)
n (x). This is a sequence of functions that converges on all rational

points of [a, b] to some function f(rj). Note, so far we have only used that fn(x) is bounded.
We may think of these limits as a function on the rational numbers in the interval [a, b]. We

claim that the sequence f
(n)
n (x) is a uniform Cauchy Sequence. To see this fix any ε > 0.

There exists δ > 0 so that |f (n)(x) − f (n)(y)| < ε/3 for all n and all x whenever |x − y| < δ.
This is precisely the assumption of equicontinuity. Choose rational points {p1, . . . , pM} in such
a way that they subdivide the interval [a, b] in intervals of length less than δ. There exists N
so that for all n > N ,

|f (n)
n (pj)− f(pj)| < ε/3

for all j = 1, . . . ,M . It is worth remembering that N depends only on ε and not, e.g., on the
choice of the rational points. Now we estimate

|f (n)
n (x)− f (m)

m (x)| ≤ |f (n)
n (x)− f (m)

m (pj)|+ |f (n)
n (pj)− f (m)

m (pj)|+ |f (n)
n (pj)− f (m)

m (x)|
where pj is the the point closest to x. Hence

|f (n)
n (x)− f (m)

m (x)| < ε

for all n > N and all x. Thus, the sequence f
(n)
n (x) converges for all x to some limit which

we denote by f(x). Moreover the convergence is uniform and hence f ∈ C[a, b]. Further, we
also know that for any m > N

|f(x)− f (m)
m (x)| = lim

n→∞
|f (n)
n (x)− f (m)

m (x)| < ε

for all x ∈ [a, b]. Hence for any m > N

‖f − f (m)
m ‖ ≤ ε

which proves the first part of the theorem.
To prove the converse, suppose the family M is not bounded. Then there exists a sequence

of functions fn ∈ M and a sequence of points xn ∈ [a, b] such that |fn(xn)| tends to infinity.
Such a sequence, however, cannot have a subsequence that converges uniformly.
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The equicontinuity is a bit more tricky. Suppose that M is not equicontinuous. What does
this mean. Recall that M is equicontinuous if

“For any ε > 0 there exists δ > 0 so that for all x, y with |x − y| < δ and all f ∈ M we
have that |f(x)− f(y)| < ε”

Suppose that M is not equicontinuous. The negation of the above statement says:

There exists some ε0 > 0 such that for any δ > 0 there exist x, y with |x−y| < δ and f ∈M
with |f(x)− f(y)| > ε0.

Hence, for this ε0 we have sequences δn → 0, xn, yn and fn ∈M such that

|fn(xn)− fn(yn)| > ε0 whenever |xn − yn| < δn .

By assumption, this sequence fn must have a convergent subsequence, which we denote again
by fn. This means that there exists f ∈ C[a, b] such that

max
a≤x≤b

|f(x)− fn(x)| → 0 , n→∞ .

In particular, the function f must be uniformly continuous, i.e., for any ε > 0 there exists
δ > 0 such that

sup
{x,y:|x−y|<δ}

|f(x)− f(y)| < ε .

However, we have that |xn − yn| → 0 as n→∞ and

|f(xn)− f(yn)| ≥ |fn(xn)− fn(yn)| − |f(xn)− fn(xn)| − |f(yn)− fn(yn)| > ε0/2

for n sufficiently large, which is a contradiction. �


