THE BANACH LIMIT

We have constructed all bounded linear functionals on c_{0}. Now one might expect, naively, that, since $c_{0} \subset \ell_{\infty}$ and therefore any bounded linear functional on ℓ_{∞} is also a bounded linear functional on c_{0}, we must have that $\ell_{\infty}^{*} \subset c_{0}^{*}$. This is not correct, as we shall see shortly. Let's go through the arguments and see where it might fail.,

Consider a bounded linear functional f on ℓ_{∞}. As before, define $b_{j}=f\left(e_{j}\right)$. We shall prove that

$$
\sum_{=1}^{\infty}\left|b_{j}\right|<\infty
$$

i.e., the sequence $\left(b_{j}\right) \in \ell_{1}$. To see this, consider

$$
y_{n}=\sum_{j=1}^{n} \frac{b_{j}}{\left|b_{j}\right|} e_{j} \in \ell_{\infty}
$$

and note that, as before, $\left\|y_{n}\right\|_{\ell_{\infty}}=1$ and

$$
f\left(y_{n}\right)=\sum_{j=1}^{n}\left|b_{j}\right|
$$

Recall that e_{j} is the sequence consisting of 1 in the j-th entry and zero otherwise. Hence

$$
\|f\|_{\ell_{\infty} *} \geq f\left(y_{n}\right)=\sum_{j=1}^{n}\left|b_{j}\right|
$$

which shows that

$$
\sum_{j=1}^{\infty}\left|b_{j}\right| \leq\|f\|_{\ell_{\infty}{ }^{*}}
$$

Thus, we are tempted to say that $\ell_{\infty}^{*}=\ell_{1}$. This is, however, not correct. The functional f is in general not given by

$$
f(x)=\sum_{i=1}^{\infty} b_{i} a_{i} .
$$

Note, that the argument we used to establish this formula for c_{0}^{*} breaks down. Indeed, there are non-trivial linear functionals $f \in \ell_{\infty}$ that vanish on all of c_{0} !

The standard example is the Banach limit For $x=\left(a_{i}\right) \in \ell_{\infty}$ consider the linear functional

$$
f_{N}(x)=\frac{\sum_{j=1}^{N} a_{j}}{N} .
$$

Consider the subspace $E \subset \ell_{\infty}$ consisting of all sequences $\left(a_{j}\right)$ such that the limit

$$
\lim _{N \rightarrow \infty} \frac{\sum_{j=1}^{N} a_{j}}{N}
$$

exists. On E define

$$
f(x)=\lim _{\substack{N \rightarrow \infty \\ 1}} f_{N}(x)
$$

which is a linear functional. Further we have that $|f(x)| \leq\|x\|_{\ell_{\infty}}$ and if $x_{0}=(1,1, \ldots)$, then $f\left(x_{0}\right)=1=\left\|x_{0}\right\|_{\ell_{\infty}}$. Thus, f is a linear functional on E and $\|f\|_{E}=1$. By H.B. there exists f_{B} a linear functional on ℓ_{∞} such that $f_{B}=f$ on E and f_{B} and f have the same norm. In particular f_{B} is not the zero functional. Note, however, that $f(x)=0$ for all $x \in c_{0}$ and hence $f_{B}(x)=0$ on c_{0}. Another interesting fact is that on can find an extension f_{B} has the property that it is invariant against shifts. Let $T(x)=\left(x_{2}, x_{3}, \ldots\right)$. Then

$$
f_{B}(T(x))=f_{B}(x) .
$$

This is a bit trickier to see.
Two points to be made: The extensions whose existence the H.B. delivers are in general not unique. The naive idea that if $E \subset X$ then $X^{*} \subset E^{*}$ is in general wrong

