THE BANACH LIMIT

We have constructed all bounded linear functionals on c_0 . Now one might expect, naively, that, since $c_0 \subset \ell_{\infty}$ and therefore any bounded linear functional on ℓ_{∞} is also a bounded linear functional on c_0 , we must have that $\ell_{\infty}^* \subset c_0^*$. This is not correct, as we shall see shortly. Let's go through the arguments and see where it might fail.,

Consider a bounded linear functional f on ℓ_{∞} . As before, define $b_j = f(e_j)$. We shall prove that

$$\sum_{j=1}^{\infty} |b_j| < \infty$$

i.e., the sequence $(b_j) \in \ell_1$. To see this, consider

$$y_n = \sum_{j=1}^n \frac{b_j}{|b_j|} e_j \in \ell_\infty$$

and note that, as before, $||y_n||_{\ell_{\infty}} = 1$ and

$$f(y_n) = \sum_{j=1}^n |b_j| \; .$$

Recall that e_j is the sequence consisting of 1 in the *j*-th entry and zero otherwise. Hence

$$||f||_{\ell_{\infty}^*} \ge f(y_n) = \sum_{j=1}^n |b_j|$$

which shows that

$$\sum_{j=1}^{\infty} |b_j| \le \|f\|_{\ell_{\infty}^*}$$

Thus, we are tempted to say that $\ell_{\infty}^* = \ell_1$. This is, however, not correct. The functional f is in general *not* given by

$$f(x) = \sum_{i=1}^{\infty} b_i a_i \; .$$

Note, that the argument we used to establish this formula for c_0^* breaks down. Indeed, there are non-trivial linear functionals $f \in \ell_{\infty}$ that vanish on all of $c_0!$

The standard example is the **Banach limit** For $x = (a_i) \in \ell_{\infty}$ consider the linear functional

$$f_N(x) = \frac{\sum_{j=1}^N a_j}{N}$$

Consider the subspace $E \subset \ell_{\infty}$ consisting of all sequences (a_j) such that the limit

$$\lim_{N \to \infty} \frac{\sum_{j=1}^{N} a_j}{N}$$

exists. On E define

$$f(x) = \lim_{\substack{N \to \infty \\ 1}} f_N(x)$$

THE BANACH LIMIT

which is a linear functional. Further we have that $|f(x)| \leq ||x||_{\ell_{\infty}}$ and if $x_0 = (1, 1, ...)$, then $f(x_0) = 1 = ||x_0||_{\ell_{\infty}}$. Thus, f is a linear functional on E and $||f||_E = 1$. By H.B. there exists f_B a linear functional on ℓ_{∞} such that $f_B = f$ on E and f_B and f have the same norm. In particular f_B is not the zero functional. Note, however, that f(x) = 0 for all $x \in c_0$ and hence $f_B(x) = 0$ on c_0 . Another interesting fact is that on can find an extension f_B has the property that it is invariant against shifts. Let $T(x) = (x_2, x_3, ...)$. Then

$$f_B(T(x)) = f_B(x) \; .$$

This is a bit trickier to see.

Two points to be made: The extensions whose existence the H.B. delivers are in general not unique. The naive idea that if $E \subset X$ then $X^* \subset E^*$ is in general wrong