BANACH SPACES, I.E., COMPLETE NORMED SPACES

In most applications one has an additional structure in that the underlying space is a vector space. We denote by \mathbb{R}_{+}the nonnegative real numbers. The vector space may be over the reals or the complex numbers. A norm on a vector space N is a function

$$
\|\cdot\|: N \rightarrow \mathbb{R}_{+}
$$

having the following properties:

$$
\begin{gathered}
\|x\|=0 \Leftrightarrow x=0 \\
\|\lambda x\|=|\lambda|\|x\| \\
\|x+y\| \leq\|x\|+\|y\| \text { all } x, y \in N
\end{gathered}
$$

A verctor space N with a norm is called a normed vector space.

Example: For any set $S \subset \mathbb{R}^{d}$ consider the continuous functions $f: S \rightarrow \mathbb{R}$. The set of such functions is denoted by $C(S)$. On this set consider the norm

$$
\|f\|=\sup _{x \in S}|f(x)|
$$

which leads to the distance

$$
d(f, g)=\|f(x)-g(x)\|
$$

If S is compact, the sup is a max but that is not relevant for the moment. It is easy to see that d defined in this way turns the set $C(S)$ into a metric space, in fact a Banach space. We shall show that this space is complete.
Proof. We show first that any Cauchy sequence $f_{n} \in C(S)$ converges to a continuous function. To see this, note that for any $x \in S$, the sequence $f_{n}(x)$ is a Cauchy sequence of real numbers and hence converges to a number which we call $f(x)$. In this way we obtain a function on S that is the point-wise limit of the sequence f_{n}. This function f is continuous. Indeed, pick any $\varepsilon>0$. We have to find $\delta>0$ such that for all $x, y \in S$ with $|x-y|<\delta$ it follows that $|f(x)-f(y)|<\varepsilon$. There exists $N(\varepsilon)$ so that for all $x \in S$ and $n>N(\varepsilon)$

$$
\left|f(x)-f_{n}(x)\right|<\varepsilon / 3
$$

Indeed, pick $N(\varepsilon)$ such that

$$
\sup _{x \in S}\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon / 3
$$

for all $n, m>N(\varepsilon)$ and note that for any $x \in S$

$$
\left|f(x)-f_{n}(x)\right|=\lim _{m \rightarrow \infty}\left|f_{m}(x)-f_{n}(x)\right| \leq \varepsilon / 3 .
$$

In particular

$$
\begin{equation*}
\sup _{x \in S}\left|f(x)-f_{n}(x)\right|<\varepsilon / 3 \tag{1}
\end{equation*}
$$

whenever $n>N(\varepsilon)$. Fix x and pick such an n and note that the exists $\delta>0$ so that for all $y \in S$ with $|x-y|<\delta$ we have that

$$
\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon / 3
$$

This follows, because f_{n} is continuous. Hence for all such y

$$
|f(x)-f(y)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(y)\right|<\varepsilon .
$$

This shows that f is continuous. The fact that

$$
\lim _{n \rightarrow \infty} d\left(f_{n}, f\right)=0
$$

follows from (1). That $\|f\|<\infty$ follows from

$$
|f(x)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)\right|
$$

so that

$$
\|f\| \leq\left\|f-f_{n}\right\|+\left\|f_{n}\right\|<\infty .
$$

1. EXistence and uniqueness of solutions for differential equations

We consider a differential equation of the form

$$
\dot{x}=v(x)
$$

where $v: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. A function $\phi: I \rightarrow \mathbb{R}^{d}$ solves an initial value problem if it satisfies the above equation and in addition the conditions $\phi(0)=x_{0}$. (Likewise we also can consider the initial value problem with $\phi\left(t_{0}\right)=x_{0}$.) The interval I contains the initial time $t=0$. We shall assume that the vector filed v is Lipschitz, i.e., there exists a constant L so that for all $x, y \in \mathbb{R}^{d}$

$$
|v(x)-v(y)| \leq L|x-y| .
$$

We shall show that this problem has a unique solution for all times. The uniqueness part is easy and is left as an exercise. The existence is more interesting. We convert the problem into an integral equation.

$$
\phi(t)=x_{0}+\int_{0}^{t} v(\phi(s)) d s
$$

and apply the Banach fixed point theorem. We shall consider the set of all continuous function $\psi: I \rightarrow \mathbb{R}^{d}$, except we do not yet know how big the interval I should be. We require that these functions satisfie $\psi(0)=x_{0}$ and we endow this space with the norm

$$
\sup _{t \in I}\left|\psi_{1}(t)-\psi_{2}(t)\right|
$$

We have seen before that this space is a complete metric space. First we do a few obvious computations. We define

$$
F(\phi)(t):=x_{0}+\int_{0}^{t} v(\phi(s)) d s
$$

and find that

$$
\left|F(\phi)(t)-x_{0}\right| \leq \int_{0}^{t}\left|v(\phi(s))-v\left(x_{0}\right)\right| d s+t\left|v\left(x_{0}\right)\right| \leq L \int_{0}^{t}\left|\phi(s)-x_{0}\right| d s+t\left|v\left(x_{0}\right)\right|
$$

so that

$$
\left|F(\phi)(t)-x_{0}\right| \leq t\left[L \sup _{0 \leq s \leq t}\left|\phi(s)-x_{0}\right|+\left|v\left(x_{0}\right)\right|\right] .
$$

For a given number $R>0$ choose $t_{0}>0$ so that

$$
t_{0}\left[L R+\left|v\left(x_{0}\right)\right|\right]<R
$$

i.e.,

$$
t_{0}<\frac{R}{L R+\left|v\left(x_{0}\right)\right|} .
$$

Thus, if we fix $R>0$ then the closed ball

$$
\bar{B}_{R}\left(x_{0}\right)=\left\{\phi:\left[-t_{0}, t_{0}\right] \rightarrow \mathbb{R}^{d}: \sup _{-t_{0} \leq t \leq t_{0}}\left|\phi(t)-x_{0}\right| \leq R\right\}
$$

is mapped into itself by F. Next, we compute

$$
\left|F\left(\psi_{1}\right)(t)-F\left(\psi_{2}\right)(t)\right| \leq t L \sup _{0 \leq s \leq t}\left|\psi_{1}(s)-\psi_{2}(s)\right|
$$

which once more implies that

$$
\sup _{-t_{0} \leq t \leq t_{0}}\left|F\left(\psi_{1}\right)(t)-F\left(\psi_{2}\right)(t)\right| \leq t_{0} L \sup _{-t_{0} \leq t \leq t_{0}}\left|\psi_{1}(t)-\psi_{2}(t)\right|
$$

and we see that the map F is a contraction on $\bar{B}_{R}\left(x_{0}\right)$ provided we choose t_{0} such that $L t_{0}<1$. By the Banach fixed point theorem there exists a unique function $\phi(t)$ continuous on the interval $\left[-t_{0}, t_{0}\right]$ such that $F(\phi)(t)=\phi(t)$, in particular

$$
\phi(t)=x_{0}+\int_{0}^{t} v(\phi(s) d s
$$

Since ϕ is continuous and v Lipschitz, ϕ is differentiable and solves the differential equation on the interval. Since the Lipschitz condition is uniform one can continue the solution indefinitely and obtains a global solution.

