
BANACH SPACES, I.E., COMPLETE NORMED SPACES

In most applications one has an additional structure in that the underlying space is a vector
space. We denote by R+ the nonnegative real numbers. The vector space may be over the
reals or the complex numbers. A norm on a vector space N is a function

‖ · ‖ : N → R+

having the following properties:
‖x‖ = 0⇔ x = 0

‖λx‖ = |λ|‖x‖
‖x+ y‖ ≤ ‖x‖+ ‖y‖ all x, y ∈ N

A verctor space N with a norm is called a normed vector space.

Example: For any set S ⊂ Rd consider the continuous functions f : S → R. The set of
such functions is denoted by C(S). On this set consider the norm

‖f‖ = sup
x∈S
|f(x)|

which leads to the distance
d(f, g) = ‖f(x)− g(x)‖ .

If S is compact, the sup is a max but that is not relevant for the moment. It is easy to see
that d defined in this way turns the set C(S) into a metric space, in fact a Banach space. We
shall show that this space is complete.

Proof. We show first that any Cauchy sequence fn ∈ C(S) converges to a continuous function.
To see this, note that for any x ∈ S, the sequence fn(x) is a Cauchy sequence of real numbers
and hence converges to a number which we call f(x). In this way we obtain a function on S
that is the point-wise limit of the sequence fn. This function f is continuous. Indeed, pick
any ε > 0. We have to find δ > 0 such that for all x, y ∈ S with |x − y| < δ it follows that
|f(x)− f(y)| < ε. There exists N(ε) so that for all x ∈ S and n > N(ε)

|f(x)− fn(x)| < ε/3 .

Indeed, pick N(ε) such that
sup
x∈S
|fn(x)− fm(x)| < ε/3

for all n,m > N(ε) and note that for any x ∈ S
|f(x)− fn(x)| = lim

m→∞
|fm(x)− fn(x)| ≤ ε/3 .

In particular
sup
x∈S
|f(x)− fn(x)| < ε/3 (1)

whenever n > N(ε). Fix x and pick such an n and note that the exists δ > 0 so that for all
y ∈ S with |x− y| < δ we have that

|fn(x)− fn(y)| < ε/3 .
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This follows, because fn is continuous. Hence for all such y

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| < ε .

This shows that f is continuous. The fact that

lim
n→∞

d(fn, f) = 0 .

follows from (1). That ‖f‖ <∞ follows from

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)|
so that

‖f‖ ≤ ‖f − fn‖+ ‖fn‖ <∞ .

�

1. Existence and uniqueness of solutions for differential equations

We consider a differential equation of the form

ẋ = v(x)

where v : Rd → Rd. A function φ : I → Rd solves an initial value problem if it satisfies the
above equation and in addition the conditions φ(0) = x0. (Likewise we also can consider the
initial value problem with φ(t0) = x0.) The interval I contains the initial time t = 0. We
shall assume that the vector filed v is Lipschitz, i.e., there exists a constant L so that for all
x, y ∈ Rd

|v(x)− v(y)| ≤ L|x− y| .
We shall show that this problem has a unique solution for all times. The uniqueness part is
easy and is left as an exercise. The existence is more interesting. We convert the problem
into an integral equation.

φ(t) = x0 +

∫ t

0

v(φ(s))ds

and apply the Banach fixed point theorem. We shall consider the set of all continuous function
ψ : I → Rd, except we do not yet know how big the interval I should be. We require that
these functions satisfie ψ(0) = x0 and we endow this space with the norm

sup
t∈I
|ψ1(t)− ψ2(t)| .

We have seen before that this space is a complete metric space. First we do a few obvious
computations. We define

F (φ)(t) := x0 +

∫ t

0

v(φ(s))ds

and find that

|F (φ)(t)− x0| ≤
∫ t

0

|v(φ(s))− v(x0)|ds+ t|v(x0)| ≤ L

∫ t

0

|φ(s)− x0|ds+ t|v(x0)|

so that

|F (φ)(t)− x0| ≤ t

[
L sup

0≤s≤t
|φ(s)− x0|+ |v(x0)|

]
.

For a given number R > 0 choose t0 > 0 so that

t0[LR + |v(x0)|] < R
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i.e.,

t0 <
R

LR + |v(x0)|
.

Thus, if we fix R > 0 then the closed ball

BR(x0) = {φ : [−t0, t0]→ Rd : sup
−t0≤t≤t0

|φ(t)− x0| ≤ R}

is mapped into itself by F . Next, we compute

|F (ψ1)(t)− F (ψ2)(t)| ≤ tL sup
0≤s≤t

|ψ1(s)− ψ2(s)|

which once more implies that

sup
−t0≤t≤t0

|F (ψ1)(t)− F (ψ2)(t)| ≤ t0L sup
−t0≤t≤t0

|ψ1(t)− ψ2(t)|

and we see that the map F is a contraction on BR(x0) provided we choose t0 such that
Lt0 < 1. By the Banach fixed point theorem there exists a unique function φ(t) continuous
on the interval [−t0, t0] such that F (φ)(t) = φ(t), in particular

φ(t) = x0 +

∫ t

0

v(φ(s)ds .

Since φ is continuous and v Lipschitz, φ is differentiable and solves the differential equation on
the interval. Since the Lipschitz condition is uniform one can continue the solution indefinitely
and obtains a global solution.


