SEPARATION OF CONVEX SETS

We know from finite dimensional geometry that disjoint convex sets can be separated by planes. In what follows, I follow closely the exposition in the book of H. Brezis, 'Analyse fonctionelle'.

Definition 0.1. Let X be a real normed vector space and $f : X \to \mathbb{R}$ be a linear functional, not necessarily continuous. The set

$$H = \{x \in X : f(x) = \alpha\}$$

is called a hyperplane in X.

We have the simple

Proposition 0.2. The hyperplane H is closed if an only if f is continuous.

Proof. Suppose that H is closed. Then the complement of H in X, H^c is open. Pick any $x_0 \in H^c$. We may assume that $f(x_0) > \alpha$. There exists an open ball $B(x_0, r) \subset H^c$. Suppose that there exists $x_1 \in B(x_0, r)$ with $f(x_1) < \alpha$. Then for all $0 \le t \le 1$, $x_t = (1 - t)x_0 + tx_1 \in B(x_0, r)$ and hence $f(x_t) \ne \alpha$. Pick

$$s = \frac{f(x_0) - \alpha}{f(x_0) - f(x_1)}$$

which, by assumption, is in (0, 1). But $f(x_s) = \alpha$ which contradicts the fact that $x_s \in H^c$. Hence we have that $f(x) > \alpha$ for all $x \in B(x_0, r)$. Hence for all $z \in B(0, 1)$ $f(x_0 - rz) > \alpha$ or

$$f(z) < \frac{f(x_0) - \alpha}{r}$$

Hence

$$\|f\| \le \frac{f(x_0) - \alpha}{r}$$

The converse is evident.

Definition 0.3. *let* $A, B \subset X$ *be two sets. We say that the hyperplane* H *separates the set* A *and* B *if*

$$f(x) \le \alpha$$
, $x \in A$, $f(x) \ge \alpha$, $x \in B$.

We say that H separates A, B strictly if there exists $\varepsilon > 0$ such that

$$f(x) \le \alpha - \varepsilon$$
, $x \in A$, $f(x) \ge \alpha + \varepsilon$, $x \in B$.

The following lemma is useful an is usually attributed to Hermann Minkowski.

Lemma 0.4. Let C be a non-empty, open and convex set. Assume further that $0 \in C$. For $x \in X$ set

$$p(x) = \inf\{t > 0 : \frac{x}{t} \in C\}$$
.

Then

a)
$$p(\lambda x) = \lambda p(x) , \lambda > 0 , x \in X ,$$

b) $p(x+y) \le p(x) + p(y) , x, y \in X ,$

c)
$$C = \{x \in X : p(x) < 1\}$$
.

Moreover, there exists a positive constant K such that

$$p(x) \le K \|x\|$$
.

Proof. The statement a) is obvious. To prove c), denote the set on the right side in c) by C'. Obviously

$$p(x) \le 1$$
, $x \in C$.

If $x \in C$ then $(1 + \varepsilon)x \in C$ for some $\varepsilon > 0$ since C is open and convex. Hence $p(x) \leq \frac{1}{1+\varepsilon} < 1$. Thus, $C \subset C'$. Conversely, if $x \in C'$, then p(x) < 1. There exists $0 < \alpha < 1$ so that $\frac{x}{\alpha} \in C$. But

$$x = \alpha \frac{x}{\alpha} + (1 - \alpha)0 \in C$$

because C is convex. Hence, C = C'. To prove b) pick any $x, y \in X$. Then

$$\frac{x}{p(x)+\varepsilon}, \frac{y}{p(y)+\varepsilon} \in C$$

because of c). Set

$$s = \frac{p(y) + \varepsilon}{p(x) + p(y) + 2\varepsilon}$$

and note that $0 \le s \le 1$. Since C is convex

$$\frac{x+y}{p(x)+p(y)+2\varepsilon} = (1-s)\frac{x}{p(x)+\varepsilon} + s\frac{y}{p(y)+\varepsilon} \in C$$

Hence, using c), $p(\frac{x+y}{p(x)+p(y)+2\varepsilon}) < 1$ and hence

$$p(x+y) < p(x) + p(y) + 2\varepsilon$$

for any $\varepsilon > 0$. For the last point, since C is open, there exists $r > \infty$ that the open ball $B(0,r) \subset C$. Hence, by c), p(x) < 1 for all $x \in B(0,r)$. Hence for all $x \in X$, $p(x) \leq \frac{\|x\|}{r}$. \Box

Remark 0.5. The function p(x) defines in the previous lemma is often called the Minkowski gauge for C.

We first prove a separation theorem for a convex set and a point.

Lemma 0.6. Let C be a non-empty open convex set and let $x_0 \in X$ with $x_0 \notin C$. There exists a bounded linear functional such that $f(x) < f(x_0)$ for all $x \in C$, i.e., the hyperplane H defined by $f = f(x_0)$ separates x_0 from C.

Proof. By shifting the set we may assume that $0 \in C$. Define the subspace

$$E = \{ tx_0 : t \in \mathbb{R} \}$$

On this subspace we have the linear functional

$$g(tx_0) = tp(x_0) ,$$

where p is the Minkowski gauge for C. Note that $p(x_0) \ge 1$ since $x_0 \notin C$. We have that $g(x) \le p(x)$ for all $x \in E$. If t > 0 then $g(tx_0) = tp(x_0) = p(tx_0)$. If $t \le 0$ then $g(tx_0) = -p(|t|x_0) \le 0 \le p(tx_0)$. By the Hahn-Banach theorem we may extend g to a linear functional f on X with the property that $f(x) \le p(x)$. Because $p(x) \le K ||x||$, we have that

$$|f(x)| \le K ||x|| , x \in X .$$

Hence f is bounded. Further, $f(x_0) = g(x_0) = p(x_0) \ge 1$ and $f(x) \le p(x) < 1$ for all $x \in C$.

Theorem 0.7. Let $A, B \subset X$ be two non-empty disjoint convex sets. Assume that A is open. Then there exists a closed hyperplane H that separates A and B.

Proof. Set $C = \{x \in X : x = y - z, y \in A, z \in B\}$. It is easily seen that the set C is convex. Since

$$C = \bigcup_{z \in B} (A - z)$$

and A is open so is C. C is not empty and moreover, the origin $0 \notin C$. By the previous lemma there exists a bounded linear functional f on X which separates C and the origin, i.e., f(x) < 0 all $x \in C$, or f(y-z) < 0 for all $y \in A, z \in B$. Hence we have that f(y) < f(z) for all $y \in A, z \in B$. From this it follows that

$$\sup_{y \in A} f(y) \le \inf_{z \in B} f(z)$$

and choosing α between these two numbers yields the desired hyperplane.

Theorem 0.8. Let A, B be two non-empty convex and disjoint sets. Assume that A is compact and B is closed. Then there exists a closed hyperplane that separates the sets strictly.

Proof. Consider the set

$$A_{\varepsilon} = A + B(0, \varepsilon)$$
, $B_{\varepsilon} = B + B(0, \varepsilon)$.

Recall that A_{ε} is the set of all vectors x that can be written as x = y + z where $y \in A$ and $z \in B(0, \varepsilon)$. Both sets A_{ε} and B_{ε} are non-empty, open and convex. This is trivial to verify. For ε small enough $A_{\varepsilon} \cap B_{\varepsilon} = \emptyset$. If not there would be a sequence $\varepsilon_n \to 0$ and a sequence of points x_n such that $x_n \in A_{\varepsilon_n} \cap B_{\varepsilon_n}$. This means that $x_n = y_n + z_n$ where $y_n \in A$ and $z_n \in B(0, \varepsilon_n)$ and since A is compact there is a convergent subsequence y_{n_k} which converges to some point in $y \in A$. Hence $x_{n_k} \to y \in A$ and since B is closed $y \in B$, a contradiction. By the previous theorem, there exists a closed hyperplane that separates A_{ε} and B_{ε} . Hence, there exists a bounded linear functional f and a number α such that

$$f(x+z_1) \le \alpha \le f(y+z_2) , x \in A, y \in B, z_1, z_2 \in B(0,\varepsilon) .$$

Hence

$$f(x) + \varepsilon ||f|| \le \alpha \le f(y) - \varepsilon ||f|| , x \in A, y \in B$$
.

Remark 0.9. If the underlying space is finite dimensional, then a stronger statement holds. Assume that A and B are disjoint, and convex, then they can be separated by a hyperplane. No additional assumptions on A and B are needed. This is false if the underlying space is infinite dimensional as the following example again taken from Brezis's book, shows.

Take X to be ℓ_1 , i.e., the space of all summable sequences. Let X be the set of all sequences of the form

$$x_{2n} = 0 ,$$

i.e.,

$$x = (x_1, 0, x_3, 0, x_5, 0, \dots)$$

where we, of course, assume that

$$\sum_{j=1}^{\infty} |x_{2j-1}| < \infty$$

Consider the set Y given by all sequence that satisfy

$$y_{2n} = \frac{1}{2^n} y_{2n-1} \; ,$$

i.e., the sequences of the form

$$y = (y_1, \frac{y_1}{2}, y_3, \frac{y_3}{2^2}, y_5, \frac{y_5}{2^3}, \dots)$$

where

$$\sum_{j=1}^{\infty} |y_{2j-1}| < \infty \; .$$

It is easy to see that X as well as Y are closed subspaces of ℓ_1 . Consider the point in ℓ_1 given by $c_{2n-1} = 0$ and $c_{2n} = \frac{1}{2^n}$, i.e.,

$$c = (0, \frac{1}{2}, 0, \frac{1}{2^2}, 0, \frac{1}{2^3}, 0, \frac{1}{2^4}, \dots)$$

This point is neither in X nor in Y. However, it is in the closure of the sum, $\overline{X+Y}$, in fact we have

$$\overline{X+Y} = \ell_1 \; .$$

To prove this consider the set S of all sequences $z \in \ell_1$ that have only finitely many non-zero elements. We know that $\overline{S} = \ell_1$. However, every element in S can be written as a sum of points in X and in Y. We simply have to consider the system of equations

$$z_j = x_j + y_j$$
, $j = 1, 2, 3, \dots$,

i.e.,

$$z_{2n-1} = x_{2n-1} + y_{2n-1}$$
, $z_{2n} = \frac{y_{2n-1}}{2^n}$, $n = 1, 2, \dots$,

which is solved by setting

$$y_{2n-1} = 2^n z_{2n} , \ x_{2n-1} = z_{2n-1} - 2^n z_{2n}$$

Because the sequence z consists of zeros for all but finitely many terms,

$$\sum_{j} |y_{2j-1}| < \infty \;, \sum_{j} |x_{2j-1}| < \infty \;.$$

Hence, $\overline{X+Y} = \ell_1$. Note that $c \notin X + Y$ since this means that

$$y_{2n-1} = 1$$
, $y_{2n} = \frac{1}{2^n}$, $x = 0$.

The sequence y_j is not summable. This example shows that, in general, it is not true that whenever X, Y are closed subspaces then X + Y is closed. Note that this carries over to ℓ_p 1 . Now define the set

$$A = X - c , B = Y .$$

Both sets are closed and disjoint, for if $d \in A \cap B$ then

$$x - c = d = y$$

for some $x \in X$ and $y \in Y$ and hence c = x - y which is not true. Hence, we have two disjoint closed sets A, B. The set B is linear and the set A is affine. Moreover, $\overline{A + B} = \ell_1$. That the two sets cannot be separated by a closed hyperplane hinges now on the following lemma.

Lemma 0.10. Let B be a linear space and f a linear functional. Suppose that there exists $\alpha \in \mathbb{R}$ such that $f(y) \geq \alpha$. Then f(y) = 0 for all $y \in B$.

Proof. Clearly $0 = f(0) \ge \alpha$ implies that $\alpha \le 0$. Further for any $\lambda > 0$ and $y \in B$, $f(\lambda y) \ge \alpha$ and hence $f(y) \ge \alpha/\lambda$. Since λ may be any positive number we have that $f(y) \ge 0$ for all $y \in B$. Hence, we may choose $\alpha = 0$. The relation $-f(y) = f(-y) \ge 0$ implies that $f(y) \le 0$ for all $y \in B$ and hence f(y) = 0 for all $y \in B$.

Suppose that there exists a bounded linear functional f and $\alpha \in \mathbb{R}$ with

$$f(x) \le \alpha, x \in A, f(y) \ge \alpha, y \in B$$
.

From the previous lemma we may choose $\alpha = 0$ and we also have that $f(y) = 0, y \in B$ and $f(x) \leq 0, x \in A$. Pick any $z \in \ell_1$. There exists a sequence of points $x_n \in A$ and $y_n \in B$ so that $z = \lim_{n \to \infty} (x_n + y_n)$. Hence, since f is bounded we have that

$$f(z) = \lim_{n \to \infty} f(x_n + y_n) = \lim_{n \to \infty} [f(x_n) + f(y_n)] \le 0$$
.

By replacing z by -z we find that f(z) = 0 and since z is arbitrary, f must be the zero functional. Hence A and B cannot be separated.