SEPARATION OF CONVEX SETS

We know from finite dimensional geometry that disjoint convex sets can be separated by planes. In what follows, I follow closely the exposition in the book of H. Brezis, 'Analyse fonctionelle'.

Definition 0.1. Let X be a real normed vector space and $f: X \rightarrow \mathbb{R}$ be a linear functional, not necessarily continuous. The set

$$
H=\{x \in X: f(x)=\alpha\}
$$

is called a hyperplane in X.
We have the simple
Proposition 0.2. The hyperplane H is closed if an only if f is continuous.
Proof. Suppose that H is closed. Then the complement of H in X, H^{c} is open. Pick any $x_{0} \in H^{c}$. We may assume that $f\left(x_{0}\right)>\alpha$. There exists an open ball $B\left(x_{0}, r\right) \subset H^{c}$. Suppose that there exists $x_{1} \in B\left(x_{0}, r\right)$ with $f\left(x_{1}\right)<\alpha$. Then for all $0 \leq t \leq 1, x_{t}=(1-t) x_{0}+t x_{1} \in$ $B\left(x_{0}, r\right)$ and hence $f\left(x_{t}\right) \neq \alpha$. Pick

$$
s=\frac{f\left(x_{0}\right)-\alpha}{f\left(x_{0}\right)-f\left(x_{1}\right)}
$$

which, by assumption, is in $(0,1)$. But $f\left(x_{s}\right)=\alpha$ which contradicts the fact that $x_{s} \in H^{c}$. Hence we have that $f(x)>\alpha$ for all $x \in B\left(x_{0}, r\right)$. Hence for all $z \in B(0,1) f\left(x_{0}-r z\right)>\alpha$ or

$$
f(z)<\frac{f\left(x_{0}\right)-\alpha}{r} .
$$

Hence

$$
\|f\| \leq \frac{f\left(x_{0}\right)-\alpha}{r}
$$

The converse is evident.
Definition 0.3. let $A, B \subset X$ be two sets. We say that the hyperplane H separates the set A and B if

$$
f(x) \leq \alpha, x \in A, f(x) \geq \alpha, x \in B
$$

We say that H separates A, B strictly if there exists $\varepsilon>0$ such that

$$
f(x) \leq \alpha-\varepsilon, x \in A, f(x) \geq \alpha+\varepsilon, x \in B
$$

The following lemma is useful an is usually attributed to Hermann Minkowski.
Lemma 0.4. Let C be a non-empty, open and convex set. Assume further that $0 \in C$. For $x \in X$ set

$$
p(x)=\inf \left\{t>0: \frac{x}{t} \in C\right\} .
$$

Then

$$
\text { a) } p(\lambda x)=\lambda p(x), \lambda>0, x \in X
$$

b) $p(x+y) \leq p(x)+p(y), x, y \in X$,

$$
\text { c) } C=\{x \in X: p(x)<1\} \text {. }
$$

Moreover, there exists a positive constant K such that

$$
p(x) \leq K\|x\|
$$

Proof. The statement a) is obvious. To prove c), denote the set on the right side in c) by C^{\prime}. Obviously

$$
p(x) \leq 1, x \in C
$$

If $x \in C$ then $(1+\varepsilon) x \in C$ for some $\varepsilon>0$ since C is open and convex. Hence $p(x) \leq \frac{1}{1+\varepsilon}<1$. Thus, $C \subset C^{\prime}$. Conversely, if $x \in C^{\prime}$, then $p(x)<1$. There exists $0<\alpha<1$ so that $\frac{x}{\alpha} \in C$. But

$$
x=\alpha \frac{x}{\alpha}+(1-\alpha) 0 \in C
$$

because C is convex. Hence, $C=C^{\prime}$. To prove b) pick any $x, y \in X$. Then

$$
\frac{x}{p(x)+\varepsilon}, \frac{y}{p(y)+\varepsilon} \in C
$$

because of c). Set

$$
s=\frac{p(y)+\varepsilon}{p(x)+p(y)+2 \varepsilon}
$$

and note that $0 \leq s \leq 1$. Since C is convex

$$
\frac{x+y}{p(x)+p(y)+2 \varepsilon}=(1-s) \frac{x}{p(x)+\varepsilon}+s \frac{y}{p(y)+\varepsilon} \in C .
$$

Hence, using c), $p\left(\frac{x+y}{p(x)+p(y)+2 \varepsilon}\right)<1$ and hence

$$
p(x+y)<p(x)+p(y)+2 \varepsilon
$$

for any $\varepsilon>0$. For the last point, since C is open, there exists $r>$ so that the open ball $B(0, r) \subset C$. Hence, by c), $p(x)<1$ for all $x \in B(0, r)$. Hence for all $x \in X, p(x) \leq \frac{\|x\|}{r}$.
Remark 0.5. The function $p(x)$ defines in the previous lemma is often called the Minkowski gauge for C.

We first prove a separation theorem for a convex set and a point.
Lemma 0.6. Let C be a non-empty open convex set and let $x_{0} \in X$ with $x_{0} \notin C$. There exists a bounded linear functional such that $f(x)<f\left(x_{0}\right)$ for all $x \in C$, i.e., the hyperplane H defined by $f=f\left(x_{0}\right)$ separates x_{0} from C.
Proof. By shifting the set we may assume that $0 \in C$. Define the subspace

$$
E=\left\{t x_{0}: t \in \mathbb{R}\right\}
$$

On this subspace we have the linear functional

$$
g\left(t x_{0}\right)=t p\left(x_{0}\right)
$$

where p is the Minkowski gauge for C. Note that $p\left(x_{0}\right) \geq 1$ since $x_{0} \notin C$. We have that $g(x) \leq p(x)$ for all $x \in E$. If $t>0$ then $g\left(t x_{0}\right)=t p\left(x_{0}\right)=p\left(t x_{0}\right)$. If $t \leq 0$ then $g\left(t x_{0}\right)=$ $-p\left(|t| x_{0}\right) \leq 0 \leq p\left(t x_{0}\right)$. By the Hahn-Banach theorem we may extend g to a linear functional f on X with the property that $f(x) \leq p(x)$. Because $p(x) \leq K\|x\|$, we have that

$$
|f(x)| \leq K\|x\|, x \in X
$$

Hence f is bounded. Further, $f\left(x_{0}\right)=g\left(x_{0}\right)=p\left(x_{0}\right) \geq 1$ and $f(x) \leq p(x)<1$ for all $x \in C$.

Theorem 0.7. Let $A, B \subset X$ be two non-empty disjoint convex sets. Assume that A is open. Then there exists a closed hyperplane H that separates A and B.

Proof. Set $C=\{x \in X: x=y-z, y \in A, z \in B\}$. It is easily seen that the set C is convex. Since

$$
C=\cup_{z \in B}(A-z)
$$

and A is open so is C. C is not empty and moreover, the origin $0 \notin C$. By the previous lemma there exists a bounded linear functional f on X which separates C and the origin,i.e., $f(x)<0$ all $x \in C$, or $f(y-z)<0$ for all $y \in A, z \in B$. Hence we have that $f(y)<f(z)$ for all $y \in A, z \in B$. From this it follows that

$$
\sup _{y \in A} f(y) \leq \inf _{z \in B} f(z)
$$

and choosing α between these two numbers yields the desired hyperplane.
Theorem 0.8. Let A, B be two non-empty convex and disjoint sets. Assume that A is compact and B is closed. Then there exists a closed hyperplane that separates the sets strictly.

Proof. Consider the set

$$
A_{\varepsilon}=A+B(0, \varepsilon), B_{\varepsilon}=B+B(0, \varepsilon) .
$$

Recall that A_{ε} is the set of all vectors x that can be written as $x=y+z$ where $y \in A$ and $z \in B(0, \varepsilon)$. Both sets A_{ε} and B_{ε} are non-empty, open and convex. This is trivial to verify. For ε small enough $A_{\varepsilon} \cap B_{\varepsilon}=\emptyset$. If not there would be a sequence $\varepsilon_{n} \rightarrow 0$ and a sequence of points x_{n} such that $x_{n} \in A_{\varepsilon_{n}} \cap B_{\varepsilon_{n}}$. This means that $x_{n}=y_{n}+z_{n}$ where $y_{n} \in A$ and $z_{n} \in B\left(0, \varepsilon_{n}\right)$ and since A is compact there is a convergent subsequence $y_{n_{k}}$ which converges to some point in $y \in A$. Hence $x_{n_{k}} \rightarrow y \in A$ and since B is closed $y \in B$, a contradiction. By the previous theorem, there exists a closed hyperplane that separates A_{ε} and B_{ε}. Hence, there exists a bounded linear functional f and a number α such that

$$
f\left(x+z_{1}\right) \leq \alpha \leq f\left(y+z_{2}\right), x \in A, y \in B, z_{1}, z_{2} \in B(0, \varepsilon)
$$

Hence

$$
f(x)+\varepsilon\|f\| \leq \alpha \leq f(y)-\varepsilon\|f\|, x \in A, y \in B
$$

Remark 0.9. If the underlying space is finite dimensional, then a stronger statement holds. Assume that A and B are disjoint, and convex, then they can be separated by a hyperplane. No additional assumptions on A and B are needed. This is false if the underlying space is infinite dimensional as the following example again taken from Brezis's book, shows.

Take X to be ℓ_{1}, i.e., the space of all summable sequences. Let X be the set of all sequences of the form

$$
x_{2 n}=0
$$

i.e.,

$$
x=\left(x_{1}, 0, x_{3}, 0, x_{5}, 0, \ldots\right)
$$

where we, of course, assume that

$$
\sum_{j=1}^{\infty}\left|x_{2 j-1}\right|<\infty
$$

Consider the set Y given by all sequence that satisfy

$$
y_{2 n}=\frac{1}{2^{n}} y_{2 n-1},
$$

i.e., the sequences of the form

$$
y=\left(y_{1}, \frac{y_{1}}{2}, y_{3}, \frac{y_{3}}{2^{2}}, y_{5}, \frac{y_{5}}{2^{3}}, \ldots\right)
$$

where

$$
\sum_{j=1}^{\infty}\left|y_{2 j-1}\right|<\infty
$$

It is easy to see that X as well as Y are closed subspaces of ℓ_{1}. Consider the point in ℓ_{1} given by $c_{2 n-1}=0$ and $c_{2 n}=\frac{1}{2^{n}}$, i.e.,

$$
c=\left(0, \frac{1}{2}, 0, \frac{1}{2^{2}}, 0, \frac{1}{2^{3}}, 0, \frac{1}{2^{4}}, \ldots\right) .
$$

This point is neither in X nor in Y. However, it is in the closure of the sum, $\overline{X+Y}$, in fact we have

$$
\overline{X+Y}=\ell_{1} .
$$

To prove this consider the set S of all sequences $z \in \ell_{1}$ that have only finitely many non-zero elements. We know that $\bar{S}=\ell_{1}$. However, every element in S can be written as a sum of points in X and in Y. We simply have to consider the system of equations

$$
z_{j}=x_{j}+y_{j}, j=1,2,3, \ldots
$$

i.e.,

$$
z_{2 n-1}=x_{2 n-1}+y_{2 n-1}, z_{2 n}=\frac{y_{2 n-1}}{2^{n}}, n=1,2, \ldots,
$$

which is solved by setting

$$
y_{2 n-1}=2^{n} z_{2 n}, x_{2 n-1}=z_{2 n-1}-2^{n} z_{2 n} .
$$

Because the sequence z consists of zeros for all but finitely many terms,

$$
\sum_{j}\left|y_{2 j-1}\right|<\infty, \sum_{j}\left|x_{2 j-1}\right|<\infty
$$

Hence, $\overline{X+Y}=\ell_{1}$. Note that $c \notin X+Y$ since this means that

$$
y_{2 n-1}=1, y_{2 n}=\frac{1}{2^{n}}, x=0
$$

The sequence y_{j} is not summable. This example shows that, in general, it is not true that whenever X, Y are closed subspaces then $X+Y$ is closed. Note that this carries over to ℓ_{p} $1<p<\infty$. Now define the set

$$
A=X-c, B=Y
$$

Both sets are closed and disjoint, for if $d \in A \cap B$ then

$$
x-c=d=y
$$

for some $x \in X$ and $y \in Y$ and hence $c=x-y$ which is not true. Hence, we have two disjoint closed sets A, B. The set B is linear and the set A is affine. Moreover, $\overline{A+B}=\ell_{1}$. That the two sets cannot be separated by a closed hyperplane hinges now on the following lemma.

Lemma 0.10. Let B be a linear space and f a linear functional. Suppose that there exists $\alpha \in \mathbb{R}$ such that $f(y) \geq \alpha$. Then $f(y)=0$ for all $y \in B$.

Proof. Clearly $0=f(0) \geq \alpha$ implies that $\alpha \leq 0$. Further for any $\lambda>0$ and $y \in B, f(\lambda y) \geq \alpha$ and hence $f(y) \geq \alpha / \lambda$. Since λ may be any positive number we have that $f(y) \geq 0$ for all $y \in B$. Hence, we may choose $\alpha=0$. The relation $-f(y)=f(-y) \geq 0$ implies that $f(y) \leq 0$ for all $y \in B$ and hence $f(y)=0$ for all $y \in B$.

Suppose that there exists a bounded linear functional f and $\alpha \in \mathbb{R}$ with

$$
f(x) \leq \alpha, x \in A, f(y) \geq \alpha, y \in B .
$$

From the previous lemma we may choose $\alpha=0$ and we also have that $f(y)=0, y \in B$ and $f(x) \leq 0, x \in A$. Pick any $z \in \ell_{1}$. There exists a sequence of points $x_{n} \in A$ and $y_{n} \in B$ so that $z=\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)$. Hence, since f is bounded we have that

$$
f(z)=\lim _{n \rightarrow \infty} f\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty}\left[f\left(x_{n}\right)+f\left(y_{n}\right)\right] \leq 0 .
$$

By replacing z by $-z$ we find that $f(z)=0$ and since z is arbitrary, f must be the zero functional. Hence A and B cannot be separated.

