
SEPARATION OF CONVEX SETS

We know from finite dimensional geometry that disjoint convex sets can be separated by
planes. In what follows, I follow closely the exposition in the book of H. Brezis, ‘Analyse
fonctionelle’.

Definition 0.1. Let X be a real normed vector space and f : X → R be a linear functional,
not necessarily continuous. The set

H = {x ∈ X : f(x) = α}
is called a hyperplane in X.

We have the simple

Proposition 0.2. The hyperplane H is closed if an only if f is continuous.

Proof. Suppose that H is closed. Then the complement of H in X, Hc is open. Pick any
x0 ∈ Hc. We may assume that f(x0) > α. There exists an open ball B(x0, r) ⊂ Hc. Suppose
that there exists x1 ∈ B(x0, r) with f(x1) < α. Then for all 0 ≤ t ≤ 1, xt = (1− t)x0 + tx1 ∈
B(x0, r) and hence f(xt) 6= α. Pick

s =
f(x0)− α

f(x0)− f(x1)

which, by assumption, is in (0, 1). But f(xs) = α which contradicts the fact that xs ∈ Hc.
Hence we have that f(x) > α for all x ∈ B(x0, r). Hence for all z ∈ B(0, 1) f(x0− rz) > α or

f(z) <
f(x0)− α

r
.

Hence

‖f‖ ≤ f(x0)− α
r

.

The converse is evident. �

Definition 0.3. let A,B ⊂ X be two sets. We say that the hyperplane H separates the set A
and B if

f(x) ≤ α , x ∈ A , f(x) ≥ α , x ∈ B .

We say that H separates A,B strictly if there exists ε > 0 such that

f(x) ≤ α− ε , x ∈ A , f(x) ≥ α + ε , x ∈ B .

The following lemma is useful an is usually attributed to Hermann Minkowski.

Lemma 0.4. Let C be a non-empty, open and convex set. Assume further that 0 ∈ C. For
x ∈ X set

p(x) = inf{t > 0 :
x

t
∈ C} .

Then
a) p(λx) = λp(x) , λ > 0 , x ∈ X ,

b) p(x+ y) ≤ p(x) + p(y) , x, y ∈ X ,
1



2 SEPARATION OF CONVEX SETS

c) C = {x ∈ X : p(x) < 1} .
Moreover, there exists a positive constant K such that

p(x) ≤ K‖x‖ .

Proof. The statement a) is obvious. To prove c), denote the set on the right side in c) by C ′.
Obviously

p(x) ≤ 1 , x ∈ C .

If x ∈ C then (1 + ε)x ∈ C for some ε > 0 since C is open and convex. Hence p(x) ≤ 1
1+ε

< 1.
Thus, C ⊂ C ′. Conversely, if x ∈ C ′, then p(x) < 1. There exists 0 < α < 1 so that x

α
∈ C.

But
x = α

x

α
+ (1− α)0 ∈ C

because C is convex. Hence, C = C ′. To prove b) pick anyx, y ∈ X. Then
x

p(x) + ε
,

y

p(y) + ε
∈ C

because of c). Set

s =
p(y) + ε

p(x) + p(y) + 2ε

and note that 0 ≤ s ≤ 1. Since C is convex

x+ y

p(x) + p(y) + 2ε
= (1− s) x

p(x) + ε
+ s

y

p(y) + ε
∈ C .

Hence, using c), p( x+y
p(x)+p(y)+2ε

) < 1 and hence

p(x+ y) < p(x) + p(y) + 2ε

for any ε > 0. For the last point, since C is open, there exists r > so that the open ball

B(0, r) ⊂ C. Hence, by c), p(x) < 1 for all x ∈ B(0, r). Hence for all x ∈ X, p(x) ≤ ‖x‖
r

. �

Remark 0.5. The function p(x) defines in the previous lemma is often called the Minkowski
gauge for C.

We first prove a separation theorem for a convex set and a point.

Lemma 0.6. Let C be a non-empty open convex set and let x0 ∈ X with x0 /∈ C. There
exists a bounded linear functional such that f(x) < f(x0) for all x ∈ C, i.e., the hyperplane
H defined by f = f(x0) separates x0 from C.

Proof. By shifting the set we may assume that 0 ∈ C. Define the subspace

E = {tx0 : t ∈ R} .
On this subspace we have the linear functional

g(tx0) = tp(x0) ,

where p is the Minkowski gauge for C. Note that p(x0) ≥ 1 since x0 /∈ C. We have that
g(x) ≤ p(x) for all x ∈ E. If t > 0 then g(tx0) = tp(x0) = p(tx0). If t ≤ 0 then g(tx0) =
−p(|t|x0) ≤ 0 ≤ p(tx0). By the Hahn-Banach theorem we may extend g to a linear functional
f on X with the property that f(x) ≤ p(x). Because p(x) ≤ K‖x‖, we have that

|f(x)| ≤ K‖x‖ , x ∈ X .
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Hence f is bounded. Further, f(x0) = g(x0) = p(x0) ≥ 1 and f(x) ≤ p(x) < 1 for all
x ∈ C. �

Theorem 0.7. Let A,B ⊂ X be two non-empty disjoint convex sets. Assume that A is open.
Then there exists a closed hyperplane H that separates A and B.

Proof. Set C = {x ∈ X : x = y − z, y ∈ A, z ∈ B}. It is easily seen that the set C is convex.
Since

C = ∪z∈B(A− z)

and A is open so is C. C is not empty and moreover, the origin 0 /∈ C. By the previous
lemma there exists a bounded linear functional f on X which separates C and the origin,i.e.,
f(x) < 0 all x ∈ C, or f(y − z) < 0 for all y ∈ A, z ∈ B. Hence we have that f(y) < f(z) for
all y ∈ A, z ∈ B. From this it follows that

sup
y∈A

f(y) ≤ inf
z∈B

f(z)

and choosing α between these two numbers yields the desired hyperplane. �

Theorem 0.8. Let A,B be two non-empty convex and disjoint sets. Assume that A is compact
and B is closed. Then there exists a closed hyperplane that separates the sets strictly.

Proof. Consider the set

Aε = A+B(0, ε) , Bε = B +B(0, ε) .

Recall that Aε is the set of all vectors x that can be written as x = y + z where y ∈ A and
z ∈ B(0, ε). Both sets Aε and Bε are non-empty, open and convex. This is trivial to verify.
For ε small enough Aε ∩ Bε = ∅. If not there would be a sequence εn → 0 and a sequence
of points xn such that xn ∈ Aεn ∩ Bεn . This means that xn = yn + zn where yn ∈ A and
zn ∈ B(0, εn) and since A is compact there is a convergent subsequence ynk

which converges
to some point in y ∈ A. Hence xnk

→ y ∈ A and since B is closed y ∈ B, a contradiction.
By the previous theorem, there exists a closed hyperplane that separates Aε and Bε. Hence,
there exists a bounded linear functional f and a number α such that

f(x+ z1) ≤ α ≤ f(y + z2) , x ∈ A, y ∈ B, z1, z2 ∈ B(0, ε) .

Hence

f(x) + ε‖f‖ ≤ α ≤ f(y)− ε‖f‖ , x ∈ A, y ∈ B .

�

Remark 0.9. If the underlying space is finite dimensional, then a stronger statement holds.
Assume that A and B are disjoint, and convex, then they can be separated by a hyperplane.
No additional assumptions on A and B are needed. This is false if the underlying space is
infinite dimensional as the following example again taken from Brezis’s book, shows.

Take X to be `1, i.e., the space of all summable sequences. Let X be the set of all sequences
of the form

x2n = 0 ,

i.e.,

x = (x1, 0, x3, 0, x5, 0, . . . )
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where we, of course, assume that
∞∑
j=1

|x2j−1| <∞

Consider the set Y given by all sequence that satisfy

y2n =
1

2n
y2n−1 ,

i.e., the sequences of the form

y = (y1,
y1
2
, y3,

y3
22
, y5,

y5
23
, . . . )

where
∞∑
j=1

|y2j−1| <∞ .

It is easy to see that X as well as Y are closed subspaces of `1. Consider the point in `1 given
by c2n−1 = 0 and c2n = 1

2n
, i.e.,

c = (0,
1

2
, 0,

1

22
, 0,

1

23
, 0,

1

24
, . . . ) .

This point is neither in X nor in Y . However, it is in the closure of the sum, X + Y , in fact
we have

X + Y = `1 .

To prove this consider the set S of all sequences z ∈ `1 that have only finitely many non-zero
elements. We know that S = `1. However, every element in S can be written as a sum of
points in X and in Y . We simply have to consider the system of equations

zj = xj + yj , j = 1, 2, 3, . . . ,

i.e.,

z2n−1 = x2n−1 + y2n−1 , z2n =
y2n−1

2n
, n = 1, 2, . . . ,

which is solved by setting

y2n−1 = 2nz2n , x2n−1 = z2n−1 − 2nz2n .

Because the sequence z consists of zeros for all but finitely many terms,∑
j

|y2j−1| <∞ ,
∑
j

|x2j−1| <∞ .

Hence, X + Y = `1. Note that c /∈ X + Y since this means that

y2n−1 = 1 , y2n =
1

2n
, x = 0 .

The sequence yj is not summable. This example shows that, in general, it is not true that
whenever X, Y are closed subspaces then X + Y is closed. Note that this carries over to `p
1 < p <∞. Now define the set

A = X − c , B = Y .

Both sets are closed and disjoint, for if d ∈ A ∩B then

x− c = d = y



SEPARATION OF CONVEX SETS 5

for some x ∈ X and y ∈ Y and hence c = x−y which is not true. Hence, we have two disjoint
closed sets A,B. The set B is linear and the set A is affine. Moreover, A+B = `1. That the
two sets cannot be separated by a closed hyperplane hinges now on the following lemma.

Lemma 0.10. Let B be a linear space and f a linear functional. Suppose that there exists
α ∈ R such that f(y) ≥ α. Then f(y) = 0 for all y ∈ B.

Proof. Clearly 0 = f(0) ≥ α implies that α ≤ 0. Further for any λ > 0 and y ∈ B, f(λy) ≥ α
and hence f(y) ≥ α/λ. Since λ may be any positive number we have that f(y) ≥ 0 for all
y ∈ B. Hence, we may choose α = 0. The relation −f(y) = f(−y) ≥ 0 implies that f(y) ≤ 0
for all y ∈ B and hence f(y) = 0 for all y ∈ B.

�

Suppose that there exists a bounded linear functional f and α ∈ R with

f(x) ≤ α, x ∈ A , f(y) ≥ α, y ∈ B .

From the previous lemma we may choose α = 0 and we also have that f(y) = 0, y ∈ B and
f(x) ≤ 0, x ∈ A. Pick any z ∈ `1. There exists a sequence of points xn ∈ A and yn ∈ B so
that z = limn→∞(xn + yn). Hence, since f is bounded we have that

f(z) = lim
n→∞

f(xn + yn) = lim
n→∞

[f(xn) + f(yn)] ≤ 0 .

By replacing z by −z we find that f(z) = 0 and since z is arbitrary, f must be the zero
functional. Hence A and B cannot be separated.


