THE MIN-MAX AND MAX-MIN PRINCIPLE

Eigenvalues of linear operators are notoriously hard to compute and a considerable amount of research goes into estimating eigenvalue and coming up with numerical schemes for computing them in an efficient manner. The simplest way for estimating eigenvalues are the min-max and the max-min principles we now describe.

The setting is a Hilbert space H and a linear, compact and self-adjoint operator $A: H \rightarrow H$. The spectrum of A consists of $\{0\} \cup \sigma_{p}(A)$ and the eigenvalues, counted with their multiplicity are real and can only accumulate at 0 . We denote the positive eigenvalues by $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0$ and the negative eigenvalues by $\mu_{1} \leq \mu_{2} \leq \cdots \leq 0$.

Recall that

$$
\lambda_{1}=\max \{\langle A x, x\rangle: x \in H,\|x\|=1\},
$$

and any $x_{1},\left\|x_{1}\right\|=1$ with $\left\langle A x_{1}, x_{1}\right\rangle=\lambda_{1}$ satisfies $A x_{1}=\lambda_{1} x_{1}$. Likewise,

$$
\mu_{1}=\min \{\langle A x, x\rangle: x \in H,\|x\|=1\} .
$$

Similar expressions can be found for higher eigenvalues. The following theorems are stated only for the positive eigenvalues and we leave it to the reader to formulate them for the negative eigenvalues.

Theorem 0.1. Min-max priniple Define the numbers

$$
\nu_{n}=\min \left\{\sup \left\{\langle A x, x\rangle: x \perp M_{n},\|x\|=1\right\}: M_{n} \subset H, \operatorname{dim} M_{n}=n-1\right\} .
$$

Then $\nu_{n}=\lambda_{n}$.
Proof. Pick any subspace $M_{n} \subset H$ with $\operatorname{dim} M_{n}=n-1$. Pick any vector

$$
x=\sum_{j=1}^{n} c_{j} x_{j}
$$

where $A x_{j}=\lambda_{j} x_{j}$. we want to choose the numbers c_{j} such that $x \neq 0$ and $x \perp M_{n}$. Pick any basis $\left\{e, \ldots, e_{n-1}\right.$ in M_{n} and consider the system of equations

$$
\sum_{j=1}^{n} c_{j}\left\langle x_{j}, e_{i}\right\rangle=0, i=1, \ldots, n-1
$$

These are $n-1$ equations with n unknowns and hence there exists a nontrivial solution d_{1}, \ldots, d_{n}. The vector

$$
x=\sum_{j=1}^{n} d_{j} x_{j}
$$

is perpendicular to M_{n} and nonzero and hence we may assume that it is normalized. Now

$$
\langle A x, x\rangle=\sum_{j=1}^{n} \lambda_{j}\left|c_{j}\right|^{2}
$$

because the eigenvectors are ortho-normal. Recall that the λ_{j} are ordered in a decreasing fashion and hence

$$
\langle A x, x\rangle \geq \lambda_{n} \sum_{j=1}^{n}\left|c_{j}\right|^{2}=\lambda_{n}\|x\|^{2}
$$

Hence, we have shown that for any M_{n},

$$
\sup \left\{\langle A x, x\rangle: x \perp M_{n},\|x\|=1\right\} \geq \lambda_{n}
$$

and hence $\nu_{n} \geq \lambda_{n}$. The converse inequality follows by choosing $M_{n}=\operatorname{span}\left[x_{1}, \ldots, x_{n-1}\right]$. Then

$$
\sup \left\{\langle A x, x\rangle: x \perp M_{n},\|x\|=1\right\}=\lambda_{n}
$$

which implies that $\nu_{n} \leq \lambda_{n}$.
Now we come to the max-min principle. This is in many ways more natural than the previous one.

Theorem 0.2. Consider the number

$$
\tau_{n}=\sup \left\{\min \left\{\langle A x, x\rangle: x \in N_{n}\right\}: N_{n} \subset H, \operatorname{dim} N_{n}=n\right\}
$$

Then $\tau_{n}=\lambda_{n}$.
Proof. Let N_{n} be an arbitrary n-dimensional subspace of H and consider a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of this space. Any vector $x \in N_{n}$ can be written as $x=\sum_{j=1}^{n} c_{j} e_{j}$. In fact, because we have n free coefficients we may choose them in such a way that x is normalized and perpendicular to x_{1}, \ldots, x_{n-1}. Hence,

$$
\langle A x, x\rangle \leq \lambda_{n}
$$

for every subspace N_{n} and hence $\tau_{n} \leq \lambda_{n}$. To obtain the reverse inequality we choose the space N_{n} spanned by the vectors x_{1}, \ldots, x_{n}. Then $\min \left\{\langle A x, x\rangle: x \in N_{n}\right\}=\lambda_{n}$ and hence $\tau_{n} \geq \lambda_{n}$.

In applications one proceeds often in the following way. Choose any n-dimensional subspace N_{n} and fix an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ in N_{n}. Now form the matrix B consisting of the matrix elements $\left\langle A e_{i}, e_{j}\right\rangle$. This $n \times n$ matrix is self-adjoint and hence can be diagonalized with eigenvalues $r_{1} \geq r_{2} \geq \cdots \geq r_{n}$. Theorem can be applied to show that

$$
\lambda_{1} \geq r_{1}, \lambda_{2} \geq r_{2}, \cdots, \lambda_{n} \geq r_{n}
$$

Diagonalizing B yields eigenspaces E_{1}, \ldots, E_{n}. Applying Theorem with $N_{1}=E_{1}$ yields the first inequality. Then we choose $N_{2}=E_{1} \oplus E_{2}$ which yields the second inequality and so on. While this procedure delivers lower bounds, we do not know anything about how good these bounds are. There is no general method to get upper bounds on the first eigenvalue of A.

Recall that the set of self adjoint operators is partially ordered. We say that $A \geq B$ if for any $x \in H$ we have that

$$
\langle A x, x\rangle \geq\langle B x, x\rangle
$$

The min-max or max-min theorems about immediately imply the
Theorem 0.3. Let A, B be compact self adjoint operator and assume that $A \geq B$. Denote the eigenvalues of A by $\lambda_{1} \geq \lambda_{2} \geq \cdots$ and the eigenvalues of B by $\mu_{\geq} \mu_{2} \geq \cdots$. Then

$$
\lambda_{1} \geq \mu_{1}, \lambda_{2} \geq \mu_{2}, \cdots
$$

Proof. We apply Theorem to the spaces $N_{n}=E_{n}$ where E_{n} is the space spanned by the first n eigenvectors of B. It follows that

$$
\lambda_{n} \geq \min \left\{\langle A x, x\rangle: x \in E_{n}\right\} \geq \min \left\{\langle B x, x\rangle: x \in E_{n}\right\}=\mu_{n} .
$$

