PROOF OF THE HAHN-BANACH THEOREM

We first start with the real case. A convenient notion is the one of a sublinear function p. This is a non-negative function that satisfies

$$
p(\lambda x)=\lambda p(x), \lambda \geq 0
$$

and

$$
p(x+y) \leq p(x)+p(y)
$$

Note that we do not require that $p(x)=p(-x)$, i.e., that p is symmetric. An example of a sublinear function is a norm. This, however, is a much stronger notion, since we have that $\|\lambda x\|\|=\lambda\| x \|$ also for $\lambda \leq 0$.

Theorem 0.1. Let L be a linear space over the real numbers and $p(x)$ be a sublinear function on L. Let L_{0} be a linear subspace of L and f_{0} be a linear functional defined on L_{0}. Assume that

$$
f_{0}(x) \leq p(x) \text { for all } x \in L_{0} .
$$

Then there exists a linear functional f defined on L such that

$$
f(x)=f_{0}(x) \text { for all } x \in L_{0}
$$

and

$$
f(x) \leq p(x) \text { for all } x \in L
$$

Note that if $f(x) \leq p(x)$ and $-f(x)=f(-x) \leq p(-x)$. Hence, such a functional is in some sense bounded.

Proof. We start by going from a the space L_{0} up by one dimension. Pick any vector $y \notin L_{0}$ and consider the span $L_{1}=\langle y, L\rangle$. If $z \in L_{1}$ we can write it in a unique way as

$$
z=\lambda y+x, x \in L_{0}
$$

Hence,

$$
f_{1}(z)=\lambda f_{1}(y)+f_{1}(x)=\lambda f_{1}(y)+f_{0}(x) .
$$

Our problem is, to choose $C:=f_{1}(y)$ in such a way that $f_{1}(z) \leq p(z)$ for all $z \in L_{1}$, i.e.,

$$
\lambda C+f_{0}\left(x_{1}\right) \leq p\left(\lambda y+x_{1}\right), \lambda \geq 0
$$

as well as

$$
-\lambda C+f_{0}\left(x_{2}\right) \leq p\left(-\lambda y+x_{2}\right), \lambda \geq 0
$$

Let us write out these inequalities in the form

$$
-p\left(-y+\frac{x_{2}}{\lambda}\right)+\frac{f_{0}\left(x_{2}\right)}{\lambda} \leq C \leq p\left(y+\frac{x_{1}}{\lambda}\right)-\frac{f_{0}\left(x_{1}\right)}{\lambda} .
$$

Here we have assumed that $\lambda>0$, the case $\lambda=0$ being trivial. Hence, our problem is to show that for all $\lambda>0$ and all $x_{1}, x_{2} \in L_{0}$ we have that

$$
-p\left(-y+\frac{x_{2}}{\lambda}\right)+\frac{f_{0}\left(x_{2}\right)}{\lambda} \leq p\left(y+\frac{x_{1}}{\lambda}\right)-\frac{f_{0}\left(x_{1}\right)}{\lambda}
$$

or by setting $u_{j}=x_{j} / \lambda \in L_{0}$ we have that show that for all $u_{1}, u_{2} \in L_{0}$ we have that

$$
-p\left(-y+u_{2}\right)+f_{0}\left(u_{2}\right) \leq p\left(y+u_{1}\right)-f_{0}\left(u_{1}\right) .
$$

Once this is established, we have that

$$
\sup _{u \in L_{0}}-p(-y+u)+f_{0}(u) \leq \inf _{u \in L_{0}}-p(-y+u)+f_{0}(u)
$$

we may choose the C between these values. In other words we have to show that

$$
f_{0}\left(u_{1}+u_{2}\right) \leq p\left(y+u_{1}\right)+p\left(-y+u_{2}\right) .
$$

This follows from

$$
f_{0}\left(u_{1}+u_{2}\right) \leq p\left(u_{1}+u_{2}\right)=p\left(y+u_{1}-y+u_{2}\right) \leq p\left(y+u_{1}\right)+p\left(-y+u_{2}\right) .
$$

The first inequality holds because $u_{1}+u_{2} \in L_{0}$ and the second follows from the subadditivity. Thus, we have found a pair $\left(L_{1}, f_{1}\right)$ with the desired properties. Now, consider the collection of all pairs $P:=\left\{\left(L_{a} l p h a, f_{\alpha}\right)\right\}$ such that $f_{\alpha}(x) \leq p(x), x \in L_{\alpha}$ and $f_{\alpha}(x)=f_{0}(x), x \in L_{0}$. This set is not empty. On this set P we introduce a partial ordering by setting

$$
\left(L_{\alpha}, f_{\alpha}\right) \prec\left(L_{\beta}, f_{\beta}\right)
$$

if L_{α} is a subspace of L_{β} and $f_{\beta}(x)=f_{\alpha}(x), x \in L_{\alpha}$. For any linearly ordered chain there is a supremum element $\left(L_{\infty}, f_{\infty}\right) \in P$ given by

$$
L_{\infty}=\cup_{\alpha \in \text { chain }} L_{\alpha}
$$

and if $x \in L_{\infty}$ then $x \in L_{\alpha}$ for some $\alpha \in$ chain so that we can set

$$
f_{\infty}(x)=f_{\alpha}(x)
$$

By Zorn's lemma there exists a maximal element ($L_{\max }, f_{\max }$). We have to show that $L_{\max }=L$. Suppose not. Then there exists $y \in L$ but $y \notin L_{\text {max }}$. define the subspace L_{1} as before and construct as before the functional f_{1}. As before we can verify all the properties of the pair $\left(L_{1}, f_{1}\right)$ and conclude that $\left(L_{\max }, f_{\max }\right) \prec\left(L_{1}, f_{1}\right)$ which contradicts the maximality of ($L_{\text {max }}, f_{\max }$). hence $L_{\text {max }}=L$ and $f_{\max }$ is the desired extension.

