
PROOF OF THE HAHN-BANACH THEOREM

We first start with the real case. A convenient notion is the one of a sublinear function
p. This is a non-negative function that satisfies

p(λx) = λp(x) , λ ≥ 0

and

p(x+ y) ≤ p(x) + p(y) .

Note that we do not require that p(x) = p(−x), i.e., that p is symmetric. An example of a
sublinear function is a norm. This, however, is a much stronger notion, since we have that
‖λx‖| = λ‖x‖ also for λ ≤ 0.

Theorem 0.1. Let L be a linear space over the real numbers and p(x) be a sublinear function
on L. Let L0 be a linear subspace of L and f0 be a linear functional defined on L0. Assume
that

f0(x) ≤ p(x) for all x ∈ L0 .

Then there exists a linear functional f defined on L such that

f(x) = f0(x) for all x ∈ L0

and

f(x) ≤ p(x) for all x ∈ L .

Note that if f(x) ≤ p(x) and −f(x) = f(−x) ≤ p(−x). Hence, such a functional is in some
sense bounded.

Proof. We start by going from a the space L0 up by one dimension. Pick any vector y /∈ L0

and consider the span L1 = 〈y, L〉. If z ∈ L1 we can write it in a unique way as

z = λy + x , x ∈ L0 .

Hence,

f1(z) = λf1(y) + f1(x) = λf1(y) + f0(x) .

Our problem is, to choose C := f1(y) in such a way that f1(z) ≤ p(z) for all z ∈ L1, i.e.,

λC + f0(x1) ≤ p(λy + x1) , λ ≥ 0

as well as

−λC + f0(x2) ≤ p(−λy + x2) , λ ≥ 0 .

Let us write out these inequalities in the form

−p(−y +
x2
λ

) +
f0(x2)

λ
≤ C ≤ p(y +

x1
λ

)− f0(x1)

λ
.

Here we have assumed that λ > 0, the case λ = 0 being trivial. Hence, our problem is to show
that for all λ > 0 and all x1, x2 ∈ L0 we have that

−p(−y +
x2
λ

) +
f0(x2)

λ
≤ p(y +

x1
λ

)− f0(x1)

λ
1
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or by setting uj = xj/λ ∈ L0 we have that show that for all u1, u2 ∈ L0 we have that

−p(−y + u2) + f0(u2) ≤ p(y + u1)− f0(u1) .
Once this is established, we have that

sup
u∈L0

−p(−y + u) + f0(u) ≤ inf
u∈L0

−p(−y + u) + f0(u)

we may choose the C between these values. In other words we have to show that

f0(u1 + u2) ≤ p(y + u1) + p(−y + u2) .

This follows from

f0(u1 + u2) ≤ p(u1 + u2) = p(y + u1 − y + u2) ≤ p(y + u1) + p(−y + u2) .

The first inequality holds because u1 +u2 ∈ L0 and the second follows from the subadditivity.
Thus, we have found a pair (L1, f1) with the desired properties. Now, consider the collection
of all pairs P := {(Lalpha, fα)} such that fα(x) ≤ p(x), x ∈ Lα and fα(x) = f0(x), x ∈ L0.
This set is not empty. On this set P we introduce a partial ordering by setting

(Lα, fα) ≺ (Lβ, fβ)

if Lα is a subspace of Lβ and fβ(x) = fα(x), x ∈ Lα. For any linearly ordered chain there is a
supremum element (L∞, f∞) ∈ P given by

L∞ = ∪α∈chainLα
and if x ∈ L∞ then x ∈ Lα for some α ∈ chain so that we can set

f∞(x) = fα(x) .

By Zorn’s lemma there exists a maximal element (Lmax, fmax). We have to show that Lmax = L.
Suppose not. Then there exists y ∈ L but y /∈ Lmax. define the subspace L1 as before
and construct as before the functional f1. As before we can verify all the properties of the
pair (L1, f1) and conclude that (Lmax, fmax) ≺ (L1, f1) which contradicts the maximality of
(Lmax, fmax). hence Lmax = L and fmax is the desired extension. �


