
SEMI-CONTINUITY

In this section we would like to collect some facts about semi continuous functions. We
keep the exposition informal and leave some of the straightforward proofs to the reader.

Recall that, quite generally, a real function f from some topological space S into the reals
is continuous if for any open subset O of the reals, the inverse image, i.e,

f−1(O) = {x ∈ S : f(x) ∈ O}
is open in S. It suffices to restrict O to an open interval, because every open subset of the
reals is a countable union of open intervals. Thus, if O = ∪∞j=1Ij then

{x ∈ S : f(x) ∈ O} = ∪∞j=1{x ∈ S : f(x) ∈ Ij}
The fact that f−1(I) is open for any interval is equivalent to both, f−1((t,∞)) and f−1((−∞, t))
being open for all t ∈ R.

Suppose that fn : S → R is a sequence of continuous functions with fn(x) ≥ fn+1(x). What
can be said about the limit f(x) = limn→∞ fn(x) provided it exists? Note that the sets

Un = {x ∈ S : fn(x) > t}
are open sets and Un+1 ⊂ Un, whereas

Vn = {x ∈ S : fn(x) < t}
satisfy Vn ⊂ Vn+1. Hence we conclude that

{x ∈ S : f(x) < t} = ∪∞n=1Vn

is open. However, nothing can be said about

{x ∈ S : f(x) > t} = ∩∞n=1Un .

A function with the property that f−1((−∞, t)) is open for all t ∈ R is an upper semi-
continuous function. Likewise, a function for which f−1((t,∞)) is open is a lower semi-
continuous function. We see that upper semi-continuous functions are preserved under
monotone decreasing limits and lower semi-continuous functions are preserved under mono-
tone increasing limits. Indeed, suppose that {fα(x)}α∈I is a family of upper semi-continuous
functions. Then

{x ∈ S : inf
α∈I

fα(x) ≥ t} = ∩α∈I{x ∈ S : fα(x) ≥ t}

and since {x ∈ S : fα(x) ≥ t} is closed so is {x ∈ S : infα∈I fα(x) ≥ t}. The proof for
lower semi-continuous functions is similar. If the topological space S is a metric space then a
function f : S → R is lower semi-continuous if and only if for any x ∈ S and any sequence xn
converging to z,

lim inf
xn→z

f(xn) ≥ f(z) . (1)

Denote the left side of the above inequality by t and suppose that f is l.s.c. and the above
statement is false, i.e. t < f(z) Then there exists ε > 0 such that t+ ε < f(z). There exists a
subsequence (again denoted by xn) so that limxn→z f(xn) = t and hence all but finitely many
elements of this sequence are in the set

C := {x ∈ S : f(x) ≤ t + ε/}
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Since this set is closed, z ∈ C and hence f(z) ≤ t + ε/2 which is a contradiction. Conversely,
assume that for every z ∈ S and any sequence xn converging to z we have that

t := lim inf
xn→z

f(xn) ≥ f(z) .

Pick any sequence xn in the set C := f−1((−∞, t]) such that xn → z. We have to show
that z ∈ C. There exists a subsequence (again denoted by xn) such that f(xn) → t. Hence
all but finitely many elements of the sequence are in f−1((−∞, t + 1/m]) and hence z ∈
f−1((−∞, t + 1/m]) since f(z) ≤ t. Hence

z ∈ ∩∞m=1f
−1((−∞, t + 1/m]) = f−1((−∞, t]) ,

and hence the set f−1((−∞, t]) is closed. The condition analogous the (1) for upper semicon-
tinuous functions is

lim sup
xn→x

f(xn) ≤ f(x)

and the reasoning for the proof is similar to one for lower semicontinuous functions.
Another useful property is that semicontinuous functions on compact sets attain some

of their extrema. More precisely, an upper semicontinuous function defined on a compact
set attains its supremum on this set wheras a lower semicontinuous functions attains its
infimum on the set. The proofs use (1) and are very easy. Another interesting fact about semi
continuous functions is that they can be approximated by continuous functions. In fact we
have:

Lemma 0.1. Assume that S is a compact metric space and let f : S → R be an upper
semicontinuous function. Then the function

fε(x) = sup
y∈S

(
f(y)− d(x, y)

ε

)
is continuous and converges pointwise to f(x) from above as ε tends to zero. Moreover, if
εleε′, then

fε(x) ≤ fε′(x) .

Proof. Clearly, f(x) ≤ fε(x) by setting y = x instead of taking the supremum. For each fixed
y ∈ S the function

x→ f(y)− d(x, y)

ε
is continuous and hence fε(x), i.e., the supremum, is a lower semicontinuous function. Because
S is compact, the function f is upper semicontinuous and y → d(x, y) is continuous, the
supremum is attained and there exists y(ε, x) ∈ S such that

fε(x) = f(y(ε, x))− d(x, y(ε, x))

ε
.

Pick any sequence xn → x. Since S is compact we may assume, by passing to a subsequence,
that y(ε, xn)→ y0. Then, since fε(x) is lower semicontinuous,

fε(x) ≤ lim inf
n→∞

fε(xn) = lim inf
n→∞

(
f(y(ε, xn))− d(xn, y(ε, xn))

ε

)
= lim inf

n→∞
f(y(ε, xn))− d(x, y0)

ε
≤ f(y0)−

d(x, y0)

ε
≤ fε(x) .
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Hence fε(x) is a continuous function. Moreover, as ε→ 0, y(ε, x)→ x, otherwise the second
term would tend to −∞. Moreover,

d(x, y(ε, x))

ε
→ 0

as ε→ 0. This follows from the inequalities

f(x) ≤ lim inf
ε→0

fε(x) = lim inf
ε→0

(
f(y(ε, x))− d(x, y(ε, x))

ε

)
≤ f(x)− lim sup

ε→0

d(x, y(ε, x))

ε

which also proves that fε(x) converges pointwise to f(x). Finally, for ε ≤ ε′,

fε(x) = sup
y∈S

(
f(y)− d(x, y)

ε′
+

d(x, y)

ε′
− d(x, y)

ε

)
≤ sup

y∈S

(
f(y)− d(x, y)

ε′

)
= fε′(x) .

�

Needless to say that for a lower semicontinuous function f : S → R where S is again a
compact metric space, we use a continuous approximation

fε(x) = inf
y∈S

(
f(y) +

d(x, y)

ε

)
.

Another, sometimes useful fact is the following lemma.

Lemma 0.2. Let S be a compact metric space and f : S → R a continuous function. Let
fn : S → R be a sequence of continuous functions that converge monotonically to f . Then the
convergence is uniform.

Proof. We may assume that fn+1(x) ≤ fn(x), i.e., the sequence is decreasing. Fix any ε > 0
and pick x ∈ S arbitrary. There exists N(x) such that |f(x) − fn(x)| < ε for all n > N(x).
More precisely

fn(x)− ε < f(x) ≤ fn(x) .

Set n = N(x) + 1. There exists an open ball centered at x with radius r(x) such that this
inequality holds for all x in this ball B(x, r(x)). Because the convergence is monotone we find
that for any m ≥ N(x) + 1

fm(x)− ε < f(x) ≤ fn(x)

for all x ∈ B(x, r(x)). Since x ∈ S is arbitrary we have that

S = ∪x∈SB(x, r(x))

and since S is compact there exists a finite sub-cover,

S = B(x1, r(x1)) ∪B(x2, r(x2)) · · · ∪B(xM , r(xM))

Now pick N = max{N(x1), . . . , N(xM)} and for any n > N we have that

fn(x)− ε < f(x) ≤ fn(x)

and the convergence is uniform.
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