HOMEWORK 10, DUE WEDNESDAY APRIL 24

Problem 5.6.14 (5 points):

Solution: The function e^{t} is differentiable and its second derivative is positive and hence the function is convex on the whole real line. Jensen's inequality the states that

$$
\frac{1}{|E|} \int_{E} e^{f} \geq \exp \left(\frac{1}{|E|} \int_{E} f\right)
$$

Similarly, $\log x$ is concave and hence, again by Jensen, the result follows, although the left side might be $-\infty$.

Problem 5.6.15 (5 points):

Solution: If ϕ is convex, then it is continuous and the inequality

$$
\phi\left(\frac{x+y}{2}\right) \leq \frac{\phi(x)+\phi(y)}{2}
$$

obviously holds. The converse is more interesting. For any k and non-negative integers α_{k}, β_{k} with $\alpha_{k}+\beta_{k}=2^{k}$ we have that

$$
\phi\left(\frac{\alpha_{k} x+\beta_{k} y}{2^{k}}\right) \leq \frac{\alpha_{k}}{2^{k}} \phi(x)+\frac{\beta_{k}}{2^{k}} \phi(y) .
$$

To see this we first note that by induction for $x_{j} \in(a, b), j=1, \ldots, 2^{k}$

$$
\phi\left(\frac{\sum_{j=1}^{2^{k}} x_{j}}{2^{k}}\right) \leq \frac{\sum_{j=1}^{2^{k}} \phi\left(x_{j}\right)}{2^{k}}
$$

Now pick $x_{j}=x, j=1, \ldots, \alpha_{k}$ and $x_{j}=y, j=\alpha_{k}+1, \ldots, 2^{k}$ and the first statement follows. Pick any $0<t<1$. There exists a sequence α_{k} such that $\alpha_{k} / 2^{k} \rightarrow t$. By the continuity of ϕ we then have that

$$
\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y)
$$

Problem 6.1.21(5 points):

Solution: We assume that $p<q$. Now we write

$$
\sum_{n}\left|x_{n}\right|^{q}=\sum_{n}\left|x_{n}\right|^{p}\left|x_{n}\right|^{q-p} \leq \sup _{n}\left|x_{n}\right|^{q-p} \sum_{n}\left|x_{n}\right|^{p}
$$

so that

$$
\|x\|_{q} \leq\|x\|_{\infty}^{\frac{q-p}{q}}\|x\|_{p}^{\frac{p}{q}}
$$

But trivially

$$
\|x\|_{\infty} \leq\|x\|_{p}
$$

and hence

$$
\|x\|_{q} \leq\|x\|_{\infty}^{\frac{q-p}{q}}\|x\|_{p}^{\frac{p}{q}} \leq\|x\|_{p}^{\frac{q-p}{q}}\|x\|_{p}^{\frac{p}{q}}=\|x\|_{p} .
$$

The sequence given by $\frac{1}{n^{r}}$ is in ℓ_{q} but not in ℓ_{p} for any r with $\frac{1}{p}>r>\frac{1}{q}$.

Problem 6.2.13 (5 points): Write

$$
\int_{E}|f|^{p} \geq \int_{\{|f|>a\}}|f|^{p} \geq a^{p}|\{|f|>a\}|
$$

and the inequality follows.

Solution:

Problem 6.2.16 (5 points):

Solution: We assume that $q<p$. Then we write

$$
\|f\|_{p}^{p}=\int_{E}|f|^{p}=\int_{E}|f|^{p} \cdot 1 \leq\left[\int_{E}|f|^{p r}\right]^{1 / r}\left[\int_{E} 1^{r^{\prime}}\right]^{1 / r^{\prime}}
$$

by Hölder's inequality where $\frac{1}{r}+\frac{1}{r^{\prime}}=1$. Choose $r=q / p \geq 1$ and hence

$$
r^{\prime}=\frac{r}{r-1}=\frac{q}{q-p}
$$

and we get that

$$
\|f\|_{p}^{p} \leq\left[\int_{E}|f|^{q}\right]^{p / q}|E|^{\frac{q-p}{q}}
$$

and hence

$$
\|f\|_{p} \leq\|f\|_{q}|E|^{\frac{1}{p}-\frac{1}{q}}
$$

Take the unit ball B in \mathbb{R}^{d}. The function $\frac{1}{|x|^{r}}$ is in $L^{p}(B)$ but not in $L^{q}(B)$ if $\frac{d}{q}<r<\frac{d}{p}$.
b) take the complement of the unit ball, B^{c}. Then the function $\frac{1}{|x|^{r}}$ is not in L^{p} but in L^{q} for all $\frac{d}{q}>r>\frac{d}{p}$.

