HOMEWORK 2, SOLUTIONS

Problem 1 (5 points): Please do exercise 0.1.24 (a) in 'Introduction to Real Analysis'.

Solution: The problem, as it is written is not correctly stated. This was pointed out to me by one of your student colleagues. Many thanks!

We prove that the function h is upper semi continuous where it is finite. Note, that no assumptions are made about g.

Assume that x is any point where $h(x)>-\infty$. Let x_{n} be any sequence in \mathbb{R}^{d} with limit x. We have to show that

$$
\limsup _{n \rightarrow \infty} h\left(x_{n}\right) \leq h(x)
$$

By the definition of the infimum for any $\varepsilon>0$ there exists $y_{0} \in B_{r}(x)$ such that $g\left(y_{0}\right)-\varepsilon \leq$ $h(x) \leq g\left(y_{0}\right)$ note that $g\left(y_{0}\right)$ must be finite. We know that, since $B_{r}(x)$ is open, there exists a ball $B_{\varepsilon}\left(y_{0}\right) \subset B_{r}(x)$. Thus, since $x_{n} \rightarrow x$ we must have that the point $y_{0} \in B_{r}\left(x_{n}\right)$ for n sufficiently large. Now,

$$
h\left(x_{n}\right)=\inf \left\{g(y): y \in B_{r}\left(x_{n}\right)\right\} \leq g\left(y_{0}\right) \leq h(x)+\varepsilon
$$

and hence $\lim \sup _{n \rightarrow \infty} h\left(x_{n}\right) \leq h(x)+\varepsilon$. Since ε is arbitrary the result follows.
Problem 2 (5 points): Please do exercise 0.1.24 (b) in 'Introduction to Real Analysis'.

Solution: If $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then because the function is upper semicontinuous,

$$
\limsup f\left(x_{n}\right) \leq f(x)
$$

By lower semicontinuity,

$$
\liminf f\left(x_{n}\right) \geq f(x)
$$

This means that $f(x) \leq \liminf f\left(x_{n}\right) \leq \limsup f\left(x_{n}\right) \leq f(x)$ and hence there is equality in these inequalities. Hence $\lim f\left(x_{n}\right)=f(x)$ and f is continuous at x. sequence converges.

Problem 3 (5 points): Please do exercise 1.1.15 in 'Introduction to Real Analysis'.
Solution: a) Let $x \in \cap_{j=1}^{\infty}\left(\cup_{k=j}^{\infty} E_{k}\right)$. This means that $x \in \cup_{k=j}^{\infty} E_{k}$ for all $j=1,2, \ldots$. Thus, for every natural number j there exists a natural number $k \geq j$ such that $x \in E_{k}$. This means that x cannot belong only to finitely many of the sets E_{k}. Conversely, if x belongs to infinitely many sets E_{k} then for any j there exists $k \geq j$ so that $x \in E_{k}$. Hence, for every j, $x \in \cup_{k=j}^{\infty} E_{k}$ and hence $x \in \cap_{j=1}^{\infty}\left(\cup_{k=j}^{\infty} E_{k}\right)$.
b) If $x \in \cup_{j=1}^{\infty}\left(\cap_{k=j}^{\infty} E_{k}\right)$ then there exists some j so that $x \in \cap_{k=j}^{\infty} E_{k}$. Thus, there exists some j so that $x \in E_{k}$ for all $k \geq j$,i.e., $x \in E_{k}$ in all but finitely many k. Conversely, if $x \in E_{k}$ for all but finitely many k, then there exists j so that $x \in E_{k}$ for all $k \geq j$, i.e., there exists j, so that $x \in \cap_{k=j}^{\infty} E_{k}$ and hence $x \in \cup_{j=1}^{\infty}\left(\cap_{k=j}^{\infty} E_{k}\right)$.

Problem 4 (5 points): Please do exercise 1.1.16 in 'Introduction to Real Analysis'.
Solution: Assume that $\sum_{k=1}^{\infty}\left|E_{k}\right|_{e}<\infty$.
a) By countable sub-additivity

$$
\left|\cup_{k=j}^{\infty} E_{k}\right|_{e} \leq \sum_{k=j}^{\infty}\left|E_{k}\right|_{e}
$$

and since $\cap_{j=1}^{\infty}\left(\cup_{k=j}^{\infty} E_{k}\right) \in \cup_{k=j}^{\infty} E_{k}$ for all j, we have that

$$
\left|\cap_{j=1}^{\infty}\left(\cup_{k=j}^{\infty} E_{k}\right)\right|_{e} \leq \sum_{k=j}^{\infty}\left|E_{k}\right|_{e}
$$

for all j but $\lim _{j \rightarrow \infty} \sum_{k=j}^{\infty}\left|E_{k}\right|_{e}=0$.
b) Since $\cap_{k=j}^{\infty} E_{k} \in E_{k}$ for all $k \geq 0$ we have that

$$
\left|\cap_{k=j}^{\infty} E_{k}\right|_{e} \leq\left|E_{k}\right|_{e}
$$

for all $k \geq j$ and since $\sum_{k=1}^{\infty}\left|E_{k}\right|<\infty$ we must have that

$$
\left|\cap_{k=j}^{\infty} E_{k}\right|_{e}=0 .
$$

for all $j=1,2, \ldots$. By countable sub-additivity

$$
\left|\cup_{j=1}^{\infty}\left(\cap_{k=j}^{\infty} E_{k}\right)\right|_{e} \leq \sum_{j=1}^{\infty}\left|\cap_{k=j}^{\infty} E_{k}\right|_{e}=0
$$

Problem 5 (5 points): Please do exercise 1.1.20 in 'Introduction to real Analysis'.
Solution: We have to show that for Q_{1}, \ldots, Q_{n} non-overlapping boxes, we have

$$
\left|\cup_{k=1}^{n} Q_{k}\right|_{e}=\sum_{k=1}^{n} \operatorname{vol}\left(Q_{k}\right) .
$$

One inequality follows from the sub-additivity of the exterior measure, namely

$$
\left|\cup_{k=1}^{n} Q_{k}\right|_{e} \leq \sum_{k=1}^{n}\left|Q_{k}\right|_{e}=\sum_{k=1}^{n} \operatorname{vol}\left(Q_{k}\right)
$$

because we proved in the lecture that for a single box $Q,|Q|_{e}=\operatorname{vol}(Q)$. This is Theorem 1.1.7 in 'Introduction to Real Analysis'. The problem is to prove the reverse inequality. Note that the union of finitely many closed boxes is compact. Cover $\cup_{k=1}^{n} Q_{k}$ by countably many boxes R_{j} such that $\sum_{j=1}^{\infty} \operatorname{vol}\left(R_{j}\right) \leq\left|\cup_{k=1}^{n} Q_{k}\right|_{e}+\varepsilon$. Enlarge these boxes a tiny bit which yields new open boxes R_{j}^{*}, so that R_{j} is a subset of R_{j}^{*} and $\operatorname{vol}\left(R_{j}^{*}\right) \leq(1+\varepsilon) \operatorname{vol}\left(R_{j}\right)$. The open boxes cover $\cup_{k=1}^{n} Q_{k}$ and hence there is a finite sub-cover which we denote by $R_{1}^{*}, \ldots, R_{N}^{*}$. We have that

$$
\operatorname{vol}\left(Q_{k}\right)=\left|Q_{k}\right|_{e} \leq \sum_{j=1}^{N}\left|R_{j}^{*} \cap Q_{k}\right|_{e}=\sum_{j=1}^{N} \operatorname{vol}\left(R_{j}^{*} \cap Q_{k}\right)
$$

since the boxes R_{j}^{*} cover the Q_{k} s and the exterior measure of a box and its volume are the same. Hence,

$$
\sum_{k=1}^{n} \operatorname{vol}\left(Q_{k}\right)=\sum_{k=1}^{n} \sum_{j=1}^{N} \operatorname{vol}\left(R_{j}^{*} \cap Q_{k}\right) \leq \sum_{j=1}^{N} \operatorname{vol}\left(R_{j}^{*}\right)
$$

since for fixed j and $R_{j}^{*} \cap Q_{k}$ are non-overlapping boxes. Hence

$$
\sum_{k=1}^{n} \operatorname{vol}\left(Q_{k}\right) \leq(1+\varepsilon) \sum_{j=1}^{N} \operatorname{vol}\left(R_{j}\right) \leq(1+\varepsilon) \sum_{j=1}^{\infty} \operatorname{vol}\left(R_{j}\right) \leq(1+\varepsilon)\left[\left|\cup_{k=1}^{n} Q_{k}\right|_{e}+\varepsilon\right]
$$

and since ε is arbitrary, the result follows.

