HOMEWORK 2, SOLUTIONS

Problem 1 (5 points): Please do exercise 0.1.24 (a) in ‘Introduction to Real Analysis’.

Solution: The problem, as it is written is not correctly stated. This was pointed out to
me by one of your student colleagues. Many thanks!

We prove that the function A is upper semi continuous where it is finite. Note, that no
assumptions are made about g.

Assume that x is any point where h(z) > —oo. Let x, be any sequence in R? with limit z.
We have to show that

limsup h(x,) < h(z) .
n— o0

By the definition of the infimum for any € > 0 there exists yo € B,(z) such that g(yp) —e <
h(x) < g(yo) note that g(yo) must be finite. We know that, since B, (z) is open, there exists
a ball B.(yo) C B,(z). Thus, since x, — = we must have that the point yy € B,(x,) for n
sufficiently large. Now,

h(x,) = inf{g(y) : y € B.(zn)} < g(yo) < () +¢

and hence limsup,,_, . h(z,) < h(x) 4 €. Since € is arbitrary the result follows.
Problem 2 (5 points): Please do exercise 0.1.24 (b) in ‘Introduction to Real Analysis’.

Solution: If x,, — x as n — oo, then because the function is upper semicontinuous,

limsup f(z,) < f(z) .
By lower semicontinuity;,

liminf f(x,) > f(x) .
This means that f(z) < liminf f(z,) < limsup f(z,) < f(z) and hence there is equality in
these inequalities. Hence lim f(z,) = f(z) and f is continuous at z. sequence converges.

Problem 3 (5 points): Please do exercise 1.1.15 in ‘Introduction to Real Analysis’.

Solution: a) Let z € N3, (U,C;O:jEk). This means that z € UpZ B} for all j = 1,2,....
Thus, for every natural number j there exists a natural number k > j such that x € Ej. This
means that x cannot belong only to finitely many of the sets Ejy. Conversely, if x belongs to
infinitely many sets Ej then for any j there exists k > j so that x € ;. Hence, for every 7,
r € UpZ By and hence x € N2, ( zoszk).

b) If z € U, ( EO:JEk) then there exists some j so that @ € MpZ,E). Thus, there exists
some j so that x € Ej for all k > jiji.e., x € Ej in all but finitely many k. Conversely, if
x € Ej for all but finitely many k, then there exists j so that x € Ej for all k£ > j, i.e., there
exists j, so that x € M2, £, and hence x € U324 (ﬂZijEk).

Problem 4 (5 points): Please do exercise 1.1.16 in ‘Introduction to Real Analysis’.

Solution: Assume that >~ |Egl. < co.
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a) By countable sub-additivity

o
| Uzo:j Ekle S Z ‘Ek|e
k=j

and since N2, (UZ‘;jEk) € Uy B, for all j, we have that
| m;il (UZO:jEk) |e < Z |Ek|e

for all j but lim;_, ZZO:] |Exle = 0.
b) Since i, Ex € By for all k > 0 we have that

| NpZ; Ekle < [Exle
for all k > j and since >~ |E)| < oo we must have that
|32 Ekle =0 .
for all j = 1,2,.... By countable sub-additivity

(o)
|03 (M2, e <Y 1002 Exle
j=1

Problem 5 (5 points): Please do exercise 1.1.20 in ‘Introduction to real Analysis’.
Solution: We have to show that for )y, ..., Q, non-overlapping boxes, we have
| Up—1 Qile = ZUOZ<Qk) :
k=1
One inequality follows from the sub-additivity of the exterior measure, namely
|Upy Qele <) 1Qkle = vol(Qx)
k=1 k=1

because we proved in the lecture that for a single box @, |@]. = vol(Q). This is Theorem 1.1.7
in ‘Introduction to Real Analysis’. The problem is to prove the reverse inequality. Note that
the union of finitely many closed boxes is compact. Cover Uj_, Q) by countably many boxes
R; such that 22 vol(R;) < |Uj_; Qklc +¢. Enlarge these boxes a tiny bit which yields new
open boxes R}, so that R; is a subset of R} and vol(R}) < (1 + ¢)vol(R;). The open boxes
cover U}_,@)) and hence there is a finite sub-cover which we denote by Rj,..., R}. We have
that

N N
vol(Qr) = |Qkle <D IR; N Qule = > vol (R} N Qy)
Jj=1 j=1

since the boxes R} cover the ;s and the exterior measure of a box and its volume are the
same. Hence,

n

n N
Zvol Qr) = ZZUOZR NQE) <

k=1

'MZ

vol (R3)
7j=1
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since for fixed j and R} N @)y are non-overlapping boxes. Hence

>_vol(Qi) < (1+2) 3 vol(Ry) < (142) ) vol(Ry) < (1+ )l Uiy Qule +¢]

and since ¢ is arbitrary, the result follows.



