
HOMEWORK 2, SOLUTIONS

Problem 1 (5 points): Please do exercise 0.1.24 (a) in ‘Introduction to Real Analysis’.

Solution: The problem, as it is written is not correctly stated. This was pointed out to
me by one of your student colleagues. Many thanks!

We prove that the function h is upper semi continuous where it is finite. Note, that no
assumptions are made about g.

Assume that x is any point where h(x) > −∞. Let xn be any sequence in Rd with limit x.
We have to show that

lim sup
n→∞

h(xn) ≤ h(x) .

By the definition of the infimum for any ε > 0 there exists y0 ∈ Br(x) such that g(y0)− ε ≤
h(x) ≤ g(y0) note that g(y0) must be finite. We know that, since Br(x) is open, there exists
a ball Bε(y0) ⊂ Br(x). Thus, since xn → x we must have that the point y0 ∈ Br(xn) for n
sufficiently large. Now,

h(xn) = inf{g(y) : y ∈ Br(xn)} ≤ g(y0) ≤ h(x) + ε

and hence lim supn→∞ h(xn) ≤ h(x) + ε. Since ε is arbitrary the result follows.
Problem 2 (5 points): Please do exercise 0.1.24 (b) in ‘Introduction to Real Analysis’.

Solution: If xn → x as n→∞, then because the function is upper semicontinuous,

lim sup f(xn) ≤ f(x) .

By lower semicontinuity,

lim inf f(xn) ≥ f(x) .

This means that f(x) ≤ lim inf f(xn) ≤ lim sup f(xn) ≤ f(x) and hence there is equality in
these inequalities. Hence lim f(xn) = f(x) and f is continuous at x. sequence converges.

Problem 3 (5 points): Please do exercise 1.1.15 in ‘Introduction to Real Analysis’.
Solution: a) Let x ∈ ∩∞j=1

(
∪∞k=jEk

)
. This means that x ∈ ∪∞k=jEk for all j = 1, 2, . . . .

Thus, for every natural number j there exists a natural number k ≥ j such that x ∈ Ek. This
means that x cannot belong only to finitely many of the sets Ek. Conversely, if x belongs to
infinitely many sets Ek then for any j there exists k ≥ j so that x ∈ Ek. Hence, for every j,
x ∈ ∪∞k=jEk and hence x ∈ ∩∞j=1

(
∪∞k=jEk

)
.

b) If x ∈ ∪∞j=1

(
∩∞k=jEk

)
then there exists some j so that x ∈ ∩∞k=jEk. Thus, there exists

some j so that x ∈ Ek for all k ≥ j,i.e., x ∈ Ek in all but finitely many k. Conversely, if
x ∈ Ek for all but finitely many k, then there exists j so that x ∈ Ek for all k ≥ j, i.e., there
exists j, so that x ∈ ∩∞k=jEk and hence x ∈ ∪∞j=1

(
∩∞k=jEk

)
.

Problem 4 (5 points): Please do exercise 1.1.16 in ‘Introduction to Real Analysis’.
Solution: Assume that

∑∞
k=1 |Ek|e <∞.
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a) By countable sub-additivity

| ∪∞k=j Ek|e ≤
∞∑
k=j

|Ek|e

and since ∩∞j=1

(
∪∞k=jEk

)
∈ ∪∞k=jEk for all j, we have that

| ∩∞j=1

(
∪∞k=jEk

)
|e ≤

∞∑
k=j

|Ek|e

for all j but limj→∞
∑∞

k=j |Ek|e = 0.

b) Since ∩∞k=jEk ∈ Ek for all k ≥ 0 we have that

| ∩∞k=j Ek|e ≤ |Ek|e
for all k ≥ j and since

∑∞
k=1 |Ek| <∞ we must have that

| ∩∞k=j Ek|e = 0 .

for all j = 1, 2, . . . . By countable sub-additivity

| ∪∞j=1

(
∩∞k=jEk

)
|e ≤

∞∑
j=1

| ∩∞k=j Ek|e = 0 .

Problem 5 (5 points): Please do exercise 1.1.20 in ‘Introduction to real Analysis’.
Solution: We have to show that for Q1, . . . , Qn non-overlapping boxes, we have

| ∪n
k=1 Qk|e =

n∑
k=1

vol(Qk) .

One inequality follows from the sub-additivity of the exterior measure, namely

| ∪n
k=1 Qk|e ≤

n∑
k=1

|Qk|e =
n∑

k=1

vol(Qk)

because we proved in the lecture that for a single box Q, |Q|e = vol(Q). This is Theorem 1.1.7
in ‘Introduction to Real Analysis’. The problem is to prove the reverse inequality. Note that
the union of finitely many closed boxes is compact. Cover ∪nk=1Qk by countably many boxes
Rj such that

∑∞
j=1 vol(Rj) ≤ | ∪n

k=1 Qk|e + ε. Enlarge these boxes a tiny bit which yields new

open boxes R∗j , so that Rj is a subset of R∗j and vol(R∗j ) ≤ (1 + ε)vol(Rj). The open boxes
cover ∪nk=1Qk and hence there is a finite sub-cover which we denote by R∗1, . . . , R

∗
N . We have

that

vol(Qk) = |Qk|e ≤
N∑
j=1

|R∗j ∩Qk|e =
N∑
j=1

vol(R∗j ∩Qk)

since the boxes R∗j cover the Qks and the exterior measure of a box and its volume are the
same. Hence,

n∑
k=1

vol(Qk) =
n∑

k=1

N∑
j=1

vol(R∗j ∩Qk) ≤
N∑
j=1

vol(R∗j )
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since for fixed j and R∗j ∩Qk are non-overlapping boxes. Hence

n∑
k=1

vol(Qk) ≤ (1 + ε)
N∑
j=1

vol(Rj) ≤ (1 + ε)
∞∑
j=1

vol(Rj) ≤ (1 + ε)[| ∪n
k=1 Qk|e + ε]

and since ε is arbitrary, the result follows.


