HOMEWORK 3, SOLUTIONS

Problem 1 (5 points): Please do problem 1.1.31 in 'Introduction to Real Analysis'.

Solution: Subdivide the real line into intervals [k, k + 1]. The function f is continuous on the real line and hence uniformly continuous on the interval [k, k + 1]. Pick any ε . There exists $\delta > 0$ so that $|f(x) - f(y)| < \varepsilon$ for $x, y \in [k, k + 1]$ with $|x - y| < \delta$. Subdivide the interval [k, k + 1] into n subintervals so that $1/n < \delta$. Denote these intervals by I_1, \ldots, I_n and by x_j the mid point of the interval I_j . Consider the closed box Q_j centered at the point $(x_j, f(x_j))$ that has length 1/n along the x-axis and length 2ε in the direction of the y axis. By construction, these boxes cover the graph of the function over the interval [k, k + 1]. Each has volume $2\varepsilon/n$ and since there are n boxes, the total area is 2ε . Since ε can be chosen arbitrarily small, we find that the graph of f over the interval [k, k + 1] has two dimensional exterior measure zero. The whole graph is a countable union of sets of exterior measure zero and hence, by countable subadditivity, has measure zero.

Problem 2 (5 points): Please do problem 1.1.35 in 'Introduction to Real Analysis'. solution: That the space $\mathbb{R}^{d-1} \times \{0\}$ has measure zero as a subset of \mathbb{R}^d can be seen by considering the closed unit cubes C_p in \mathbb{R}^{d-1} that are centered at each point $p \in \mathbb{Z}^{d-1}$. They are a countable number. Now the measure of each unit cube is zero. Just take the box

$$C_p \times [-\varepsilon, \varepsilon]$$

which has exterior measure 2ε and since ε is arbitrary it follows that $|C_p| = 0$. the rest follows by countable subadditivity.

Problem 3 (5 points): Please do problem 1.1.38 in 'Introduction to Real Analysis'.

Solution: Suppose there exist countable many boxes with $\sum_k vol(Q_k) < \infty$ and each point of *E* belongs to infinitely many boxes. This means that

$$E \subset \bigcap_{j=1}^{\infty} (\bigcup_{k=j}^{\infty} Q_k)$$

and hence

$$E|_e \le |\cup_{k=j}^{\infty} Q_k|_e$$

for all $j \ge 1$. Because, $\sum_{k=1}^{\infty} vol(Q_k) < \infty$

$$|E|_e \le \sum_{k=j}^{\infty} vol(Q_k) \to 0$$

as $j \to \infty$. Conversely, assume that $|E_e = 0$. For any *n* there exist countably many boxes Q_n^k so that $E \subset \bigcup_{k=1}^{\infty} Q_n^k$ and such that

$$\sum_{k=1}^{\infty} \operatorname{vol}(Q_n^k) < 2^{-n} \; .$$

Pick any $x \in E$, then $x \in \bigcup_{k=1}^{\infty} Q_n^k$ for all n and hence for any n there must be a k(n) such that $x \in Q_n^k$. It could be that all but finitely many of these boxes are the same. However

that cannot be, because if the were infinite repetitions of the same box the sum f the volumes could not be finite. Hence x belongs to infinitely may boxes.

Problem 4 (5 points): Please do problem 1.2.31 in 'Introduction to Real Analysis'. **Solution:** The distance between the set F and the set K is given by

$$d(F, K) := \inf_{x \in F, y \in K} ||x - y||$$
.

Pick any $y_0 \in K$ and consider a closed ball $\overline{B}_R(y_0)$ of radius R centered at y_0 such that $K \subset \overline{B}_R(y_0)$ and $F \cap \overline{B}_R(y_0) \neq \emptyset$. Such a ball exists, because K is compact and if the there is no intersection with F for any R then F must be the empty set contrary to our assumption. By the triangle inequality, any point in F outside $\overline{B}_R(y_0)$ has distance larger than d(F, K). Hence it follows that

$$d(F,K) = \inf_{x \in F \cap \overline{B}_R(y_0), y \in K} \|x - y\|.$$

The set $F \cap \overline{B}_R(y_0)$ is compact because closed and bounded sets in \mathbb{R}^d are compact and hence $F \cap \overline{B}_R(y_0) \times K$ is a compact set in $\mathbb{R}^d \times \mathbb{R}^d$. The function $(x, y) \to ||x - y||$ is continuous as a function of two variables and hence has a minimum on $F \cap \overline{B}_R(y_0) \times K$. Denote the points of minimal distance by (x_m, y_m) . Because F and K are disjoint $x_m \neq y_m$ and hence d(F, K) > 0.

Problem 5 (5 points): Please do problem 1.2.32 in 'Introduction to Real Analysis'.

Solution: We write the sets as disjoint unions. Recall that if A, B are measurable so is $A \cap B$ and $A \setminus (A \cap B) = A \cap (A \cap B)^c$. Now we write that various sets as disjoint unions of measurable sets:

$$A = [A \cap (A \cap B)^c] \cap (A \cap B) , B = [B \cap (A \cap B)^c] \cap (A \cap B)^c$$

and

$$A \cup B = [A \cap (A \cap B)^c] \cup (A \cap B) \cup [B \cap (A \cap B)^c]$$

Since the sets are disjoint and measurable

$$|A| + |B| = |A \cap (A \cap B)^{c}| + 2|A \cap B| + |B \cap (A \cap B)^{c}|$$

and

$$|A \cup B| = |A \cap (A \cap B)^c| + |A \cap B| + |B \cap (A \cap B)^c|$$

Hence it follows that

$$|A| + |B| = |A \cap (A \cap B)^c| + 2|A \cap B| + |B \cap (A \cap B)^c| = |A \cup B| + |A \cap B|.$$