
HOMEWORK 3, SOLUTIONS

Problem 1 (5 points): Please do problem 1.1.31 in ‘Introduction to Real Analysis’.
Solution: Subdivide the real line into intervals [k, k + 1]. The function f is continuous

on the real line and hence uniformly continuous on the interval [k, k + 1]. Pick any ε. There
exists δ > 0 so that |f(x) − f(y)| < ε for x, y ∈ [k, k + 1] with |x − y| < δ. Subdivide the
interval [k, k + 1] into n subintervals so that 1/n < δ. Denote these intervals by I1, . . . , In
and by xj the mid point of the interval Ij. Consider the closed box Qj centered at the point
(xj, f(xj)) that has length 1/n along the x-axis and length 2ε in the direction of the y axis.
By construction, these boxes cover the graph of the function over the interval [k, k+ 1]. Each
has volume 2ε/n and since there are n boxes, the total area is 2ε. Since ε can be chosen
arbitrarily small, we find that the graph of f over the interval [k, k + 1] has two dimensional
exterior measure zero. The whole graph is a countable union of sets of exterior measure zero
and hence, by countable subadditivity, has measure zero.

Problem 2 (5 points): Please do problem 1.1.35 in ‘Introduction to Real Analysis’.
solution: That the space Rd−1 × {0} has measure zero as a subset of Rd can be seen by

considering the closed unit cubes Cp in Rd−1 that are centered at each point p ∈ Zd−1. They
are a countable number. Now the measure of each unit cube is zero. Just take the box

Cp × [−ε, ε]
which has exterior measure 2ε and since ε is arbitrary it follows that |Cp| = 0. the rest follows
by countable subadditivity.

Problem 3 (5 points): Please do problem 1.1.38 in ‘Introduction to Real Analysis’.
Solution: Suppose there exist countable many boxes with

∑
k vol(Qk) <∞ and each point

of E belongs to infinitely many boxes. This means that

E ⊂ ∩∞j=1(∪∞k=jQk)

and hence
|E|e ≤ | ∪∞k=j Qk|e

for all j ≥ 1. Because,
∑∞

k=1 vol(Qk) <∞

|E|e ≤
∞∑
k=j

vol(Qk)→ 0

as j →∞. Conversely, assume that |Ee = 0. For any n there exist countably many boxes Qk
n

so that E ⊂ ∪∞k=1Q
k
n and such that

∞∑
k=1

vol(Qk
n) < 2−n .

Pick any x ∈ E, then x ∈ ∪∞k=1Q
k
n for all n and hence for any n there must be a k(n) such

that x ∈ Qk
n. It could be that all but finitely many of these boxes are the same. However
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that cannot be, because if the were infinite repetitions of the same box the sumof the volumes
could not be finite. Hence x belongs to infinitely may boxes.

Problem 4 (5 points): Please do problem 1.2.31 in ‘Introduction to Real Analysis’.
Solution: The distance between the set F and the set K is given by

d(F,K) := inf
x∈F,y∈K

‖x− y‖ .

Pick any y0 ∈ K and consider a closed ball BR(y0) of radius R centered at y0 such that
K ⊂ BR(y0) and F ∩BR(y0) 6= ∅. Such a ball exists, because K is compact and if the there is
no intersection with F for any R then F must be the empty set contrary to our assumption.
By the triangle inequality, any point in F outside BR(y0) has distance larger than d(F,K).
Hence it follows that

d(F,K) = inf
x∈F∩BR(y0),y∈K

‖x− y‖ .

The set F ∩BR(y0) is compact because closed and bounded sets in Rd are compact and hence
F ∩BR(y0)×K is a compact set in Rd×Rd. The function (x, y)→ ‖x− y‖ is continuous as a
function of two variables and hence has a minimum on F ∩BR(y0)×K. Denote the points of
minimal distance by (xm, ym). Because F and K are disjoint xm 6= ym and hence d(F,K) > 0.

Problem 5 (5 points): Please do problem 1.2.32 in ‘Introduction to Real Analysis’.
Solution: We write the sets as disjoint unions. Recall that if A,B are measurable so is

A ∩ B and A \ (A ∩ B) = A ∩ (A ∩ B)c. Now we write that various sets as disjoint unions of
measurable sets:

A = [A ∩ (A ∩B)c] ∩ (A ∩B) , B = [B ∩ (A ∩B)c] ∩ (A ∩B)

and
A ∪B = [A ∩ (A ∩B)c] ∪ (A ∩B) ∪ [B ∩ (A ∩B)c] .

Since the sets are disjoint and measurable

|A|+ |B| = |A ∩ (A ∩B)c|+ 2|A ∩B|+ |B ∩ (A ∩B)c|
and

|A ∪B| = |A ∩ (A ∩B)c|+ |A ∩B|+ |B ∩ (A ∩B)c|
Hence it follows that

|A|+ |B| = |A ∩ (A ∩B)c|+ 2|A ∩B|+ |B ∩ (A ∩B)c| = |A ∪B|+ |A ∩B| .


