HOMEWORK 4, DUE WEDNESDAY FEBRUARY 8

Problem 1 (5 points): Please do problem 1.2.33 in 'Introduction to Real Analysis'.
Solution: We reduce the problem to the case in which the sets are disjoint. Consider the set

$$
Z=\cup_{m, n=1}^{\infty} E_{m} \cap E_{n}
$$

This is a countable union of sets of measure zero and by countable subadditivity $|Z|=0$. Next, we remove Z from our considerations, i.e., we consider

$$
G_{k}=E_{k} \backslash Z
$$

These sets are disjoint and $\left|G_{k}\right|=\left|E_{k}\right|$ Hence

$$
\left|\cup_{k=1}^{\infty} E_{k}\right|=\left|\cup_{k=1}^{\infty} G_{k} \cup Z\right|=\left|\cup_{k=1}^{\infty} G_{k}\right|=\sum_{k=1}^{\infty}\left|G_{k}\right|=\sum_{k=1}^{\infty}\left|E_{k}\right|
$$

Problem 2 (5 points): Please do problem 1.2.35 in 'Introduction to Real Analysis'.
The problem is the following:
Let $E \subset \mathbb{R}^{m}$ and $F \subset \mathbb{F}^{n}$. Assume that $P(x, y)$ is a statement that is either true or false for each pair $(x, y) \in E \times F$. Suppose that "for every $x \in E, P(x, y)$ is true for a.e. $y \in F$ ". Must it be true that " for a.e. $y \in F, P(x, y)$ is true for every $x \in E$ "?

Solution: No, the second statement must not be necessarily true. Take the space $[0,1] \times$ $[0,1]$ and consider the statement " $x \neq y$ ". For every fixed $x \in[0,1], x \neq y$ for almost every $y \in[0,1]$. This is a true statement since the only point where the statement is false is the point $y=x$. Now for any y given, the statement $x \neq y$ is not true for every $x \in[0,1]$, because $x=y$ violates this statement. Thus for any y the second statement is false. Here is another example I learned from C. Heil. Consider $E=F=\mathbb{R}$ and consider the statement $x-y \notin \mathbb{Q}$. For every $x \in \mathbb{R}$ we have that this is true for almost every $y \in \mathbb{R}$. However, for $y \in \mathbb{R}$ it is false that $x-y \notin \mathbb{Q}$ for all $x \in \mathbb{R}$, just pick $x=y+2$, e.g..

Problem 3 (5 points): Please do problem 1.2.38 in 'Introduction to Real Analysis'.
Solution Recall Caratheodory's criterion, that E is measurable if and only if for ANY set $A \in \mathbb{R}^{d}$ we have that

$$
|A|_{e}=|A \cap E|_{e}+|A \backslash E|_{e}
$$

Since E is measurable and $A \cap E=\emptyset$,

$$
|E \cup A|_{e}=|(E \cup A) \backslash E|_{e}+|(E \cup A) \cap E|_{e}=|A|_{e}+|E|
$$

Another way of solving this is using that for the set $E \cup A$ there exists a G_{δ} set H with $E \cup A \subset H$ and $|E \cup A|_{e}=|H|$. Hence

$$
|E \cup A|_{e}=|H|=|H \underset{1}{ } E|+|E| \geq|A|_{e}+|E|
$$

since $A \subset(H \backslash E)$. By subadditivity

$$
|E \cup A|_{e} \leq|A|_{e}+|E|
$$

Problem 4 (7 points): Please do problem 1.2.43 in 'Introduction to Real Analysis'.
Solution: Assume that A, B are measurable then we have that $|E|=|A|+|B|$. For the converse we note that there exist G_{δ} set G and H with $A \subset G$ and $|A|_{e}=|G|$ and $B \subset H$ with $|B|_{e}=|H|$. We may assume that both G and H are subsets of E otherwise take the intersection with E.Note that E is a G_{δ} set up to a set of measure zero.

We have that

$$
E \backslash G \subset B \subset H
$$

and hence

$$
\left.|H \backslash B|_{e} \leq|H \backslash(E \backslash G)|=|H|-\mid E \backslash G\right)\left|=|H|-|E|+|G|=|A|_{e}+|B|_{e}-|E|=0\right.
$$

Hence $H \backslash B$ is a set of measure zero and so B is measurable. The same argument applies to A.

Problem 5 (3 points): Please do problem 1.2.44 in 'Introduction to Real Analysis'.
Solution: Consider the set $E=\mathbb{Z}$ and consider the function $f: E \rightarrow \mathbb{R}$ given by $f(n)=|n|$. This function is continuous but the essential supremum is zero while the actual supremum is 'infinity'.

