HOMEWORK 5, DUE MARCH 1

Problem 1 (5 points): Please solve Problem 3.1.11 in 'Introduction to real analysis'.

Problem 2 (5 points): Please solve Problem 3.2.8 in 'Introduction to real analysis'.

Problem 3 (5 points): Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of non-negative measurable functions on a measurable set $E \subset \mathbb{R}^{d}$. Prove that

$$
\int_{E} \sum_{j=1}^{\infty} f_{n}=\sum_{j=1}^{\infty} \int_{E} f_{n}
$$

Problem 4 (5 points): Consider a non-negative integrable function $f: E \rightarrow \mathbb{R}_{+}$. where $E \subset \mathbb{R}^{d}$ is measurable. Show that

$$
\int_{E} f=\int_{0}^{\infty}|\{x \in E: f(x)>t\}| d t
$$

where the last integral is a Riemann integral.

Problem 5 (5 points): Use the result of Problem 4 to compute the Lebesgue integral

$$
\int_{-1}^{1}|x|^{-1 / 2} d x
$$

