HOMEWORK 5, DUE MARCH 1

Problem 1 (5 points): Please solve Problem 3.1.11 in 'Introduction to real analysis'.

Solutions: a) We use Tchebyshev's inequality

$$
|\{f>t\}| \leq \frac{1}{t} \int_{E} f
$$

and hence

$$
|\{f=\infty\}|=\left|\cap_{s>0}\{f>s\}\right| \leq \frac{1}{t} \int_{E} f
$$

for any t and hence $\left|\cap_{s>0}\{f>s\}\right|=0$.
b) Pick $\frac{1}{x^{2}}$ on the interval $[-1,1]$.

Problem 2 (5 points): Please solve Problem 3.2.8 in 'Introduction to real analysis'.

Solution: Since the sequence $0 \leq f_{n}$ is pointwise monotone increasing it converges pointwise to some limit function $0 \leq f$ which might be intinite at certain points. By Fatou's lemma

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} \geq \int_{E} f
$$

Because $f \geq f_{n}$ for all n we have that $\int_{E} f_{n} \leq \int_{E} f$ and thus,

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} \leq \int_{E} f
$$

Problem 3 (5 points): Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of non-negative measurable functions on a measurable set $E \subset \mathbb{R}^{d}$. Prove that

$$
\int_{E} \sum_{j=1}^{\infty} f_{n}=\sum_{j=1}^{\infty} \int_{E} f_{n}
$$

Solution: Apply the monotone convergence theorem to the partial sums

$$
s_{n}(x)=\sum_{k=1}^{n} f_{k}(x) .
$$

Problem 4 (5 points): Consider a non-negative integrable function $f: E \rightarrow \mathbb{R}_{+}$. where $E \subset \mathbb{R}^{d}$ is measurable. Show that

$$
\int_{E} f=\int_{0}^{\infty}|\{x \in E: f(x)>t\}| d t
$$

where the last integral is a Riemann integral.

Solution: The function $t \rightarrow|\{x \in E: f(x)>t\}|$ is monotone decreasing and hence Riemann integrable. Fix L large consider the sets $E_{k}=\left\{f>L \frac{k}{n}\right\}$. These sets define a sumple function given by

$$
\phi_{n}=\frac{L}{n} \sum_{k=1}^{n} \chi_{E_{k}} .
$$

Note that this simple function is not in the standard representation. But it is integrable and we get

$$
\int_{E} \phi_{n}=\frac{L}{n} \sum_{k=1}^{n}\left|E_{k}\right|
$$

Moreover, we find that ϕ_{n} converges monotonically to f on the set where $f \leq L$. Clearly $\int_{E} \phi_{\leq} \int_{E} f$ and moreover $\int_{E} \phi_{n} \rightarrow \int_{0}^{L}|\{f>t\}|$ as $n \rightarrow \infty$. By monotone convergence

$$
\int_{f \leq L} f=\lim _{n \rightarrow \infty} \int_{E} \phi_{n}=\int_{0}^{L} \mid\{f>t\} d t
$$

Problem 5 (5 points): Use the result of Problem 4 to compute the Lebesgue integral

$$
\int_{-1}^{1}|x|^{-1 / 2} d x
$$

Solution: We have that

$$
\left|\left\{|x|^{-1 / 2}>t\right\}\right|=\frac{2}{t^{2}}
$$

for $t>1$ and equals 2 for $0<t \leq 1$. Hence,

$$
\int_{0}^{\infty}\left|\left\{|x|^{-1 / 2}>t\right\}\right| d t=2+2 \int_{1}^{\infty} \frac{1}{t^{2}} d t=4
$$

