HOMEWORK 6, DUE WEDNESDAY MARCH 8

Problem 1 (5 points): Show that any function which is monotone on the interval $[a, b]$ is Riemann integrable on $[a, b]$.

Solution: Assume that f is monotone increasing. We have to present a sequence of partitions such that the lower sum and the upper sum get as close as we like. Pick a positive integer N and set

$$
x_{k}=a+\frac{k}{N}(b-a), k=0, \ldots, N .
$$

These points define a partition Γ. The lower sum is given by

$$
S_{L}=\sum_{j=1}^{N} f\left(x_{j-1}\right)\left(x_{j}-x_{j-1}\right)=\sum_{j=1}^{N} f\left(x_{j-1}\right) \frac{b-a}{N}
$$

and the upper sum by

$$
S_{U}=\sum_{j=1}^{N} f\left(x_{j}\right)\left(x_{j}-x_{j-1}\right)=\sum_{j=1}^{N} f\left(x_{j}\right) \frac{b-a}{N} .
$$

Hence

$$
0 \leq S_{U}-S_{L}=\sum_{j=1}^{N} f\left(x_{j}\right) \frac{b-a}{N}-\sum_{j=1}^{N} f\left(x_{j-1}\right) \frac{b-a}{N}=\frac{(f(b)-f(a))(b-a)}{N} \rightarrow 0, N \rightarrow \infty
$$

Problem 2 (7 points): Please do problem 3.5.13 in 'Introduction to real analysis'.

Solution: Consider the set $A=\{f>t\}$, where $t>0$. Then, by assumption

$$
0=\int_{A} f \geq t|\{f>t\}|
$$

Hence the set where f is strictly positive has measure zero. Hence $f \leq 0$, i.e., $f=-f^{-}$. Repeating the same argument for f^{-}yields the result. For the second part note that

$$
\int_{|f|>t}|f|+\int_{|f| \leq t}|f|=\int|f|
$$

As $t \rightarrow \infty$ the second term tends to $\int|f|$ by monotone convergence. Hence the first term tends to zero and if we choose t large so that the first term is less than ε then the set $A=\{|f| \leq t\}$ does the job.

Problem 3 (2 points): Please do problem 3.5.17 in 'Introduction to real analysis'.

Solution: Pick $E=\mathbb{R}$ and the sequence

$$
f_{n}(x)=\frac{1}{n} \chi_{[-n, n]}(x) .
$$

Problem 4 (8 points): Please do problem 3.5.24 in 'Introduction to real analysis'.

Solution: Here we imitate the proof of the dominated convergence theorem using Fatou's lemma. We know that

$$
|f(x)|=\lim _{n \rightarrow \infty}\left|f_{n}(x)\right| \leq \lim _{n \rightarrow \infty} g_{n}(x)=g(x)
$$

The function $g+g_{n}-\left|f-f_{n}\right|$ is non-negative and converges pointwise to $2 g$. Hence, by Fatou's lemma

$$
2 \int g \leq \liminf _{n \rightarrow \infty} \int\left[g+g_{n}-\left|f-f_{n}\right|\right]=2 \int g-\limsup _{n \rightarrow \infty} \int\left|f-f_{n}\right|
$$

which implies the result.

Problem 5 (3 points): Please do problem 3.5.26 in 'Introduction to real analysis'.

Solution: We may assume that f is real valued with $|f| \leq M$. Pick $\varepsilon>0$. There exists a contnuous function g such that $\|f-g\|<\varepsilon$. By the Weierstrass theorem there exists a polynomial p such that $|g(x)-p(x)|<\varepsilon$ uniformly on $[0,1]$. Hence

$$
\int_{0}^{1} f(x)^{2}=\int_{0}^{1} f(x)(f(x)-g(x))+\int_{0}^{1} f(x)(g(x)-p(x))+\int_{0}^{1} f(x) p(x) .
$$

By assumption $\int_{0}^{1} f(x) p(x)=\sum c_{n} \int f(x) x^{n}=0$ and therefore

$$
\int_{0}^{1} f(x)^{2} \leq M \int_{0}^{1}|f(x)-g(x)|+M \int_{0}^{1}|g(x)-p(x)| \leq 2 M \varepsilon
$$

