HOMEWORK 7, DUE FRIDAY MARCH 17

Problem 1 (5 points): Please do problem 3.6.12 in 'Introduction to Real Analysis'.

Solution: For each x fixed the integral $\int_{0}^{1} f(x, y) d y=0$ and similarly for each y fixed the integral $\int_{0}^{1} f(x, y) d x=0$. However, the integral $\int_{Q_{i}}|f(x, y)| d x d y=1$ and hence The total integral over the full square diverges. In particular $\int_{Q} f(x, y)^{+}=\infty$ and $\int_{Q} f(x, y)^{-}=\infty$ and the integral $\int_{Q} f$ is not defined.

Problem 2 (6 points): Please do problem 3.6.21 in 'Introduction to Real Analysis'.

Solution: We just solve b) the other parts are proved by changing variables.

$$
\begin{aligned}
& {\left.[(f \star g) \star h](x)=\in_{\mathbb{R}^{d}} f \star g\right)(y) h(x-y) d y } \\
= & \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(z) g(y-z) d z h(x-y) d y
\end{aligned}
$$

Now using Fubini's theorem this equals

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(z) g(y-z) h(x-y) d y d z \\
= & \int_{\mathbb{R}^{d}} f(z) \int_{\mathbb{R}^{d}} g(y-z) h(x-y) d y d z
\end{aligned}
$$

and changing variables $y^{\prime}=y-z$ yields

$$
\begin{align*}
& \int_{\mathbb{R}^{d}} f(z) \int_{\mathbb{R}^{d}} g\left(y^{\prime}\right) h\left(x-z-y^{\prime}\right) d y^{\prime} d z \\
= & \int_{\mathbb{R}^{d}} f(z)(g \star h)(x-z) d z \\
= & {[f \star(g \star h)](x) . } \tag{1}
\end{align*}
$$

Problem 3 (6 points): Please do problem 3.6.22 in 'Introduction to Real Analysis'.

Solution: a) Fix any $x \in \mathbb{R}^{d}$. Then $g(x-y)$ is, as a function of y in L^{∞}. Hence the function $f(y) g(x-y)$ is integrable for every $x \in \mathbb{R}^{d}$. Hence $f \star g(x)$ exists for every $x \in \mathbb{R}^{d}$.
b) We write

$$
f \star g(x+h)-f \star g(x)=\int_{\mathbb{R}^{d}} f(y) g(x+h-y) d y-\int_{\mathbb{R}^{d}} f(y) g(x-y) d y
$$

and changing variables $y^{\prime}=x+h-y$ in the first and $y^{\prime}=x-y$ in the second integral, this equals

$$
\int_{\mathbb{R}^{d}} f\left(x+h-y^{\prime}\right) g\left(y^{\prime}\right) d y^{\prime}-\int_{\mathbb{R}^{d}} f\left(x-y^{\prime}\right) g\left(y^{\prime}\right) d y^{\prime}
$$

Hence

$$
\begin{gathered}
|f \star g(x+h)-f \star g(x)| \leq \int_{\mathbb{R}^{d}}\left|f\left(x+h-y^{\prime}\right)-f\left(x-y^{\prime}\right) \| g\left(y^{\prime}\right)\right| d y^{\prime} \\
\leq\|g\|_{\infty} \int_{\mathbb{R}^{d}}\left|f\left(x+h-y^{\prime}\right)-f\left(x-y^{\prime}\right)\right| d y^{\prime}=\|g\|_{\infty} \int_{\mathbb{R}^{d}}|f(h-y)-f(y)| d y \rightarrow 0
\end{gathered}
$$

as $h \rightarrow 0$.
c) Note that $|f \star g(x)| \leq \int_{\mathbb{R}^{d}}\left|f(y)\left\|g(x-y)\left|d y \leq\|g\|_{\infty} \int_{\mathbb{R}^{d}}\right| f(y) \mid d y=\right\| g\left\|_{\infty}\right\| f \|_{1}\right.$. Hence $\|f \star g\|_{\infty} \leq\|g\|_{\infty}\|f\|_{1}$.

Problem 4 (8 points): Please do problem 3.6.23 in 'Introduction to Real Analysis'.

Solution: That $\chi_{E} \star \chi_{-E}(x)$ is continuous follows from the previous problem. Suppose that $\chi_{E} \star \chi_{-E}(x) \neq 0$. Then $x \in E-E$. For if $x \notin E-E$ then for any $y \in E, y-x$ is not in E and hence $\chi_{E}(y) \chi_{-E}(x-y)=0$ and thus $\int \chi_{E}(y) \chi_{-E}(x-y) d y=0$. As a consequence, we have to show that the set of all x with $\chi_{E} \star \chi_{-E}(x) \neq 0$ contains an interval. However, $\chi_{E} \star \chi_{-E}(0)=|E|>0$ and since $\chi_{E} \star \chi_{-E}(x)$ is continuous, and the set contains an interval.

