HOMEWORK 8, DUE FRIDAY MARCH 31

Problem 1 (5 points): Please do problem 4.1.6 in 'Introduction to real analysis'

Solution: Reflect the Cantor function about the y axis. The function has a derivative that vanishes almost everywhere. It grow from 0 to 1 and then back down to zero.

Problem 2 (5 points): Please do problem 4.2.10 in 'Introduction to real analysis'

Solution: a) Pick the partition $\Gamma=\{a, b\}$. Then $|f(b)-f(a)|=S_{\Gamma} \leq V[f ; a, b]$.
b) Suppose that $\Gamma=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ now add a point y so that $\Gamma^{\prime}=\{a=$ $\left.x_{0}<x_{1}<\cdots x_{i-1}<y<x_{i}<\cdots<x_{n}=b\right\}$. Then

$$
\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \leq\left|f\left(x_{i}\right)-f(y)\right|+\left|f(y)-f\left(x_{i-1}\right)\right|
$$

and hence $S_{\Gamma} \leq S_{\Gamma^{\prime}}$. The proof for an arbitrary refinement follows by induction.
c) For any partition Γ of $[c, d], \Gamma^{\prime}=\{a, b\} \cup \Gamma$ is a partition for $[a, b]$ and hence

$$
S_{\Gamma} \leq S_{\Gamma^{\prime}} \leq V[f ; a, b]
$$

Hence $V[f ; c, d] \leq V[f ; a, b]$.

Problem 3 (5 points): Please do problem 4.2.16 in 'Introduction to real analysis'

Solution: If f_{r}, f_{i} are both in $B V[a, b]$ then since $|f(x)-f(y)| \leq\left|f_{r}(x)-f_{r}(y)\right|+\mid f_{i}(x)-$ $f_{i}(y) \mid f \in B V[a, b]$ as well. The converse follows since $\left|f_{r}(x)-f_{r}(y)\right| \leq|f(x)-f(y)|$ and $\left|f_{i}(x)-f_{i}(y)\right| \leq|f(x)-f(y)|$.

Problem 4 (5 points): Please do problem 4.2.20 in 'Introduction to real analysis'

Solution: The problem is that we only know that f is Lipschitz on A. For $E \subset A$, pick any $\varepsilon>0$ and U open, so that $E \subset U$ and such that $|U| \leq|E|_{e}+\varepsilon$. The set U is a countable union of open intervals $\left(a_{n}, b_{n}\right)$. The union of the sets $\left(a_{n}, b_{n}\right) \cap A$ contains E, but on these sets the function f is Lipschitz. For any $x, y \in\left(a_{n}, b_{n}\right) \cap A$ we have that

$$
|f(x)-f(y)| \leq K\left(x-y \mid \leq K\left(b_{n}-a_{n}\right) .\right.
$$

Hence, $f\left(\left(a_{n}, b_{n}\right) \cap A\right)$ is a subset of an interval of length at most $K\left(b_{n}-a_{n}\right)$ and therefore

$$
|f(E)|_{e} \leq|f(U \cap A)|_{e} \leq \sum_{n}\left|f\left(\left(a_{n}, b_{n}\right) \cap A\right)\right|_{e} \leq K \sum_{n}\left(b_{n}-a_{n}\right)=K|U| \leq K\left(|E|_{e}+\varepsilon\right)
$$

and since ε is arbitrarily small the result follows.

Problem 5 (5 points): Please do problem 4.2.21 a) in 'Introduction to real analysis'

Solution: Suppose that $a \leq b$. We want to show that f is not in $B V[-1,1]$. It suffices to show that the function restricted to $x \geq 0$ is not in $B V[0,1]$. Since $\sin \pi k=0$ for all $k \in \mathbb{Z}$ we have that the function f vanishes at the values $x_{k}=\left(\frac{1}{\pi k}\right)^{1 / b}$. Moreover, at the values $y_{k}=\left(\frac{1}{\pi(k+1 / 2)}\right)^{1 / b}$ the sine function is ± 1. Hence

$$
\sum_{k}\left|f\left(x_{k}\right)-f\left(y_{k}\right)\right|=\sum_{k} y_{k}^{a}=\sum_{k}\left(\frac{1}{\pi(k+1 / 2)}\right)^{a / b}
$$

which, since $a / b \leq 1$ diverges. For $a / b>1$ let $\Gamma=\left\{0=x_{0}<x_{1} \cdots<x_{n}=1\right\}$ be any partition. For $x>0$ the function f is continuously differentiable with derivative $a x^{a-1} \sin x^{-b}-$ $b x^{a-b-1} \cos x^{-b}$ and hence

$$
\sum_{j=1}^{n} \mid f\left(x_{j}\right)-f\left(x_{j-1}\left|=\left|f\left(x_{1}\right)\right|+\sum_{j=1}^{n}\right| \int_{x_{j-1}}^{x_{j}} f^{\prime}(y) d y\left|\leq\left|f\left(x_{1}\right)\right|+\sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}}\right| f^{\prime}(y) \mid d y\right.
$$

Now $a x^{a-1} \sin x^{-b}-b x^{a-b-1} \cos x^{-b} \leq a x^{a-1}+b x^{a-b-1}$ and hence

$$
\sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}}\left|f^{\prime}(y)\right| d y \leq \int_{x_{1}}^{1}\left[a x^{a-1}+b x^{a-b-1}\right] d x
$$

and since $a>b$ we get for the integral

$$
\left(1-x_{1}^{a}\right)+\frac{b}{a-b}\left(1-x_{1}^{a-b}\right) \leq \frac{a}{a-b} .
$$

The value of $\left|f\left(x_{1}\right)\right| \leq 1$ and hence

$$
S_{\Gamma} \leq 1+\frac{a}{a-b}
$$

and $f \in B V[0,1]$.

