HOMEWORK 9, DUE WEDNESDAY APRIL 12

Problem 5.1.7 (5 points): Pick $\varepsilon>0$ and let $\sum\left(b_{j}-a_{j}\right)<\delta$ so that

$$
\sum\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\varepsilon
$$

Since the real part f_{r} satisfies $\mid f_{r}\left(b_{0}-f_{r}\left(a_{j}\right)\left|\leq\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|\right.\right.$ it follows that

$$
\sum\left|f_{r}\left(b_{j}\right)-f_{r}\left(a_{j}\right)\right|<\varepsilon .
$$

The argument for the imaginary part f_{i} is similar.

Problem 5.1.10 (5 points): Assume that for any ε there exists $\delta>0$ such that for any finite collection, of non-overlapping intervals $\left[b_{j}, a_{j}\right]$ with $\sum\left(b_{j}-a_{j}\right)<\delta$ it follows that $\sum\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| \leq \varepsilon$. Now pick a countable collection of non overlapping intervals with $\sum_{1}^{\infty}\left(b_{j}-a_{j}\right)<\delta$. Then we also have that $\sum_{1}^{N}\left(b_{j}-a_{j}\right)<\delta$ for any $N<\infty$. Hence we know that $c_{N}=\sum_{1}^{N}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| \leq \varepsilon$ for any $N<\infty$. Since the sequence c_{N} is monotone increasing and $c_{N} \leq \varepsilon$ for all $N<\infty$ we also have that $\lim _{N \rightarrow \infty} c_{N} \leq \varepsilon$. Hence the function f is absolutely continuous. The converse of the statement is trivial.

Problem 5.3.5 a) (5 points): Let $g:[a, b] \rightarrow[c, d]$ be absolutely continuous and $f:$ $[c, d] \rightarrow \mathbb{R}$ be Lipschitz with constant K. Let ε be given. We know that there exists $\delta>0$ so that if $\left[a_{j}, b_{j}\right]$ is any collection of non-overlapping intervals in $[a, b]$ with $\sum\left(b_{j}-a_{j}\right)<\delta$, it follows that $\sum\left|g\left(b_{j}\right)-g\left(a_{j}\right)\right| \leq \varepsilon$. Hence

$$
\sum\left|f\left(g\left(b_{j}\right)\right)-f\left(g\left(a_{j}\right)\right)\right| \leq K \sum\left|g\left(b_{j}\right)-g\left(a_{j}\right)\right| \leq K \varepsilon
$$

and hence $f \circ g$ is absolutely continuous.

Problem 5.3.8 (5 points): We have shown in class that if f is absolutely continuous and $[a, b]$ and f^{\prime} which exists a.e. vanishes a.e., then f is constant everywhere. Now define $G(x)=\int_{a}^{x} g(y) d y$ and note that, by assumption $F^{\prime}=g$ a.e.. Hence $F-G$, which is absolutely continuous, has a derivative that vanishes a.e., and hence $F-G$ is constant everywhere. Hence $F=G+c, c$ some constant, and F is continuously differentiable.

Problem 5.3.11 (5 points): $|g(x)| \leq x^{2}$ and hence $g \in L^{1}[-1,1]$. The function g is differentiable at every point, but the derivative for $x \neq 0$ is given by

$$
2 x \sin \left(\frac{1}{x^{2}}\right)-2 \frac{1}{x} \cos \left(\frac{1}{x^{2}}\right)
$$

This function is not in L^{1} and hence g is not absolutely continuous. One way to see that the function is not in L^{1} is to compute with the substitution $s=1 / x^{2}$,

$$
\int_{\varepsilon} \frac{1}{x}\left|\cos \left(\frac{1}{x^{2}}\right)\right| d x=\frac{1}{2} \int_{1}^{1 / \varepsilon}|\cos (s)| \frac{1}{s} d s
$$

and this last integral is easily seen to diverge as $\varepsilon \rightarrow 0$.

