Name:

Write legibly, write your arguments short and clearly! If I cannot read what you write or I cannot understand what you write I do not give credit. You have to convince me that your argument is right. It is not my job to show that your argument is wrong.

Problem 1 (5 points): Let $C \subset \mathbb{R}^{d}$ be compact and $f: C \rightarrow \mathbb{R}$ an upper semicontinuous function. Prove that f attains its maximum.

Solution: By definition of the infimum there exists a sequence $x_{n} \in C$ such that

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\inf _{y \in C} f(y)
$$

Since C is compact, there exists a subsequence $x_{n_{k}}$ and $x \in C$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$. Because f is lower semicontinuous

$$
\inf _{y \in C} f(y)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right) \geq f(x)
$$

but $f(x) \geq \inf _{y \in C} f(y)$ and hence there must be equality. Thus, $f(x)=\inf _{y \in C} f(y)$.

Problem 2 (5 points): Let $E_{1} \supset E_{2} \supset E_{3} \cdots$ be a countable collection of nested measurable sets in \mathbb{R}^{d}. Prove that

$$
\left|\cap_{k=1}^{\infty} E_{k}\right|=\lim _{k \rightarrow \infty}\left|E_{k}\right|
$$

Solution: We set $B_{j}=E_{j} \backslash E_{j+1}$ and note that $E_{k}=\left(\cap_{i=1}^{\infty} E_{i}\right) \cup\left(\cup_{j=k+1}^{\infty} B_{j}\right)$. Since the union is disjoint

$$
\left|E_{k}\right|=\mid\left(\cap_{i=1}^{\infty} E_{i}\left|+\sum_{j=k+1}^{\infty}\right| B_{j} \mid\right.
$$

and as $k \rightarrow \infty, \sum_{j=k+1}^{\infty}\left|B_{j}\right| \rightarrow 0$ and hence $\left|E_{k}\right| \rightarrow \mid\left(\cap_{i=1}^{\infty} E_{i} \mid\right.$.

Problem 3 (5 points): Let A be a set in \mathbb{R}^{d} with $|A|_{e}<\infty$. Suppose there exists an F_{σ} set $F \subset A$ such that $|F|=|A|_{e}$. Show that A is measurable.

Solution: We know that there exists a G_{δ} set H with $A \subset H$ and $|A|_{e}=|H|$. Note that H is measurable. Because $F \subset A$ and $|F|=|A|_{e}$ we have that $F \subset H$ and $|F|=|H|$. Hence $H=(H \backslash F) \cup F,|H|=|H \backslash F|+|F|$ and $|H \backslash F|=0$. Since $A \backslash F \subset H \backslash F, A=F \cup(A \backslash F)$ where F is measurable and $A \backslash F$ has measure zero.

Problem 4 (5 points): Let $A, B \subset \mathbb{R}^{d}$ be measurable sets. Define the symmetric difference

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Prove that $|A \Delta B|=0$ if and only if

$$
|A \cap B|=\frac{|A|+|B|}{2}
$$

Solution: the sets are measurable. We have that

$$
|A \Delta B|=|A \backslash B|+|B \backslash A|
$$

since the two sets are disjoint. We also have that $|A \backslash B|=|A|-|A \cap B|$ and $|B \backslash A|=$ $|B|-|A \cap B|$. Hence,

$$
|A \Delta B|=|A|+|B|-2|A \cap B|
$$

From this formula the claim follows.

Problem 5 (5 points): Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a lower semicontinuous function. Show that f is measurable.

Solution: A lower semicontinuous function has open level sets and hence it is measurable.

Problem 6 (3 points each): True or false. You do not have to prove anything.
a) For any subset $A \subset \mathbb{R}^{d}$ there exists a G_{δ} set H such that $A \subset H$ and $|H \backslash A|_{e}=0$. FALSE
b) The pointwise limit of a sequence of measurable functions is measurable. TRUE (Note: I should have added that the functions are finite a.e. in the statement of the problem).
c) A property holds almost everywhere if the set where the property fails has measure zero. TRUE
d) If $f_{n}, f: E \rightarrow \mathbb{R}$ are non-negative functions and f_{n} converges pointwise to f then $\int_{E} f_{n} \rightarrow \int_{E} f$ as $n \rightarrow \infty$. FALSE
e) Every sequence that converges in measure converges pointwise a.e. FALSE

