PRACTICE FINAL EXAM FOR MATH 6337, REAL ANALYSIS 1, APRIL 27, 2017

Name:

Write legibly and write your arguments short and clearly! If I cannot read what you write or I cannot understand what you write I do not give credit. You have to convince me that your argument is right. It is not my job to show that your argument is wrong.

Problem 1 (5 points): Assume that $1 \leq p < q \leq \infty$ and that $f \in L^p(\mathbb{R}^d) \cap L^q(\mathbb{R}^d)$. Show that $f \in L^r(\mathbb{R}^d)$ for all $p \leq r \leq q$.

Solution: Since $p \leq r \leq q$ we mat write

$$r = tp + (1-t)q$$

or by setting $t = \frac{1}{s}$ we have that $1 - t = \frac{1}{s'}$ where s' is the index dual to s. Now

$$\int |f|^r = \int (|f|^p)^{\frac{1}{s}} (|f|^q)^{\frac{1}{s'}} \le (\int |f|^p)^{\frac{1}{s}} (\int |f|^q)^{\frac{1}{s'}}$$

Problem 2 (5 points): For x > 0 consider the function $s(x) = x \log x$ and set s(0) = 0. Show that on $(0, \infty)$ this function is convex and show that for any function $f \ge 0$ measurable on a set E with $|E| < \infty$ with $\frac{1}{|E|} \int_E f = 1$,

$$\frac{1}{|E|} \int_E s(f(x)) dx \ge 0$$

Solution: The function $x \log x$ has the derivative $\log x + 1$ and its second derivative is 1/x > 0. Hence the function is convex. Now Jensen's inequality yields

$$\frac{1}{|E|} \int_E s(f(x))dx \ge s(\frac{1}{|E|} \int_E f(x)dx) = \left(\frac{1}{|E|} \int_E f(x)dx\right) \log\left(\frac{1}{|E|} \int_E f(x)dx\right) = 0$$
 because $\frac{1}{|E|} \int_E f(x)dx = 1$.

Problem 3 (5 points): You have shown in one of the exercises that for a non-negative integrable function on \mathbb{R}^d one has the formula

$$\int_0^\infty |\{f > a\}| da$$

Find an analogous formula for $||f||_p$, the $L^p(\mathbb{R}^d)$ norm of a function. Use this to show that when f, g are two non-negative functions with $|\{f > a\}| = |\{g > a\}|$ then their p norms are the same.

Solution: We start with

$$\int |f|^p = \int_0^\infty |\{|f|^p > a\}|da$$

now set $a = b^p$ and note that $\{|f|^p > a\} = \{|f| > b\}$ so that

$$\int_0^\infty |\{|f|^p > a\}| da = p \int_0^\infty |\{|f| > b\}| b^{p-1} db$$

This means that the L^p norm of a function depends only on the measures of the level sets. Hence if $|\{f > a\}| = |\{g > a\}|$ then the *p*-norms of *g* and *f* are the same.

Problem 4 (5 points): Let $f \in L^p(\mathbb{R}^d)$ for all p sufficiently large. Show that $\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$

Solution: Consider the set

$$E_{\varepsilon} = \{ x \in \mathbb{R}^d : |f(x)| \ge \|f\|_{\infty} - \varepsilon \}$$

We note that for some fixed q large

$$(||f||_{\infty} - \varepsilon)|E_{\varepsilon}| \le \int_{E_{\varepsilon}} |f|^q \le \int |f|^q < \infty$$

and hence $|E_{\varepsilon}| \leq C$. Moreover, $|E_{\varepsilon}| > 0$, because otherwise the essential supremum of |f| would be smaller than $||f||_{\infty}$. Further

$$\liminf_{p \to \infty} (\int |f|^p)^{1/p} \ge \lim_{p \to \infty} (\|f\|_{\infty} - \varepsilon) |E_{\varepsilon}|^{1/p} = \|f\|_{\infty} - \varepsilon$$

Thus,

$$\liminf_{p \to \infty} (\int |f|^p)^{1/p} \ge ||f||_{\infty} .$$

Next, suppose that $\limsup_{p\to\infty} (\int |f|^p)^{1/p} > ||f||_{\infty}$. Fix some r large with $||f||_r < \infty$ and pick $0 < \varepsilon < ||f||_{\infty}$. Then for p > r

$$\|f\|_{p} = \left(\int_{|f|>\varepsilon} |f|^{p} + \int_{|f|\le\varepsilon} |f|^{p}\right)^{1/p} \le \left(|\{|f|>\varepsilon\}| \|f\|_{\infty}^{p} + \varepsilon^{p-r} \int |f|^{r}\right)^{1/p}$$
$$= \|f\|_{\infty} \left(|\{|f|>\varepsilon\}| + \frac{\varepsilon^{p-r} \int |f|^{r}}{\|f\|_{\infty}^{p}}\right)^{1/p} \le \|f\|_{\infty} \left(|\{|f|>\varepsilon\}| + \varepsilon^{-r} \int |f|^{r}\right)^{1/p}$$

Hence

$$\limsup_{p \to \infty} \|f\|_p \le \|f\|_{\infty} \limsup_{p \to \infty} \left(|\{|f| > \varepsilon\}| + \varepsilon^{-r} \int |f|^r \right)^{1/p} = \|f\|_{\infty} .$$

Problem 5 (5 points): Let f, g be two measurable functions on \mathbb{R}^d . Prove that the set $\{x : f(x) > g(x)\}$ is measurable.

Solution: We write

$$\{x : f(x) > g(x)\} = \bigcup_{r \in \mathbb{Q}} \left[\{f(x) > r\} \cap \{g(x) < r\} \right]$$

and since \mathbb{Q} is countable and f as well as g are measurable the set $\{x : f(x) > g(x)\}$ is measurable too.

Problem 6 (5 points): Let $E \subset \mathbb{R}^d$ be a measurable set with $|E| < \infty$ and let f_j be a sequence of complex valued functions such that $f_j \to f$ pointwise almost everywhere. Assume that $\int_E |f_j|^2 \leq 1$ and $\int_E |f|^2 < \infty$. Show that $\int_E |f - f_j|^p \to 0$ for all $1 \leq p < 2$.

Solution: Pick any $\varepsilon > 0$. By Egorov's theorem there exists a set $A \subset E$ such that $|E \setminus A| < \varepsilon$ and $f_j \to f$ uniformly on A. Thus,

$$\limsup_{j \to \infty} \int_E |f_j - f|^p \le \limsup_{j \to \infty} \int_A |f_j - f|^p + \limsup_{j \to \infty} \int_{E \setminus A} |f_j - f|^p$$

However,

$$\int_{E \setminus A} |f_j - f|^p = \int_{E \setminus A} |f_j - f|^p \cdot 1 \le [\int_{E \setminus A} |f_j - f|^2]^{1/2} [\int_{E \setminus A} 1]^{1/r} = [\int_{E \setminus A} |f_j - f|^2]^{1/2} \varepsilon^{1/r}$$

where $\frac{1}{r} = \frac{1}{p} - \frac{1}{2} > 0$. By assumption

 $||f_j - f||_2 \le ||f||_2 + ||f_j||_2 \le \text{Constant}$

where the constant is independent of j. Moreover

$$\limsup_{j \to \infty} \int_A |f_j - f|^p = 0$$

because of the uniform convergence. Hence,

$$\limsup_{j \to \infty} \int_E |f_j - f|^p \le \text{Constant}\varepsilon^{1/i}$$

and since ε is arbitrary the result follows.

Problem 7 (5 points): Let ϕ be a non-negative function with compact support on \mathbb{R}^d and assume that $\int \phi(y) dy = 1$. Let $\varepsilon > 0$ and consider $\phi_{\varepsilon}(x) \varepsilon^{-d} \phi(\frac{x}{\varepsilon})$. For $f \in L^1(\mathbb{R}^d)$ show that

$$\|\phi_{\varepsilon} \star f - f\|_1 \to 0$$

as $\varepsilon \to 0$.

Solution: We write

$$\phi_{\varepsilon} \star f - f = \int \phi_{\varepsilon}(y) [f(x - y) - f(x)] dy$$

and changing variables this equals

$$\int \phi(y) [f(x-\varepsilon y) - f(x)] dy \; .$$

Integrating with respect to x

$$\int |\int \phi(y)[f(x-\varepsilon y) - f(x)]dy|dx$$

and using Fubini's theorem, we find the bound

$$\int \phi(y) \int |f(x - \varepsilon y) - f(x)| dx dy \; .$$

The integrand with respect to the variable y is bounded by $2\phi(y)||f||_1$ and since ϕ has compact support we find that

$$\lim_{\varepsilon \to 0} \int \phi(y) \int |f(x - \varepsilon y) - f(x)| dx dy = \int \phi(y) \lim_{\varepsilon \to 0} \int |f(x - \varepsilon y) - f(x)| dx dy = 0$$

Problem 8 (5 points): Let ϕ be a function in $C^1(\mathbb{R}^d)$ with compact support. Show that for any $f \in L^1(\mathbb{R}^d)$ the function

 $\phi \star f(x)$

is differentiable.

Solution: First we note that

$$\lim_{h \to 0} \frac{\phi(x+h) - \phi(x) - \nabla \phi(x) \cdot h}{|h|} = 0$$

since ϕ is differentiable. Next we write

$$\phi(x+h) - \phi(x) = \int_0^1 \nabla \phi(x+th) \cdot h dt$$

and find that

$$\left|\frac{\phi(x+h) - \phi(x) - \nabla\phi(x) \cdot h}{|h|}\right| \le C$$

for all h and all x where C is some constant. This uses the assumption that ϕ has compact support. Now,

$$\frac{1}{|h|} \left[\phi \star f(x+h) - \phi \star f(x) - \int \nabla \phi(x-y) \cdot hf(y) dy \right]$$
$$= \int \frac{1}{|h|} \left[\phi(x+h-y) - \phi(x-y) - \nabla \phi(x-y) \cdot h \right] f(y) dy$$

The integrand is bounded by a constant times |f(y)| and as $h \to 0$ it tends to zero. Hence by dominated convergence we have that

$$\lim_{h \to 0} \frac{1}{|h|} \left[\phi \star f(x+h) - \phi \star f(x) - \int \nabla \phi(x-y) \cdot hf(y) dy \right] = 0$$

as claimed.

Problem 9 (5 points): Deduce the monotone convergence theorem from Fatou's lemma.

Solution: Let f_n be a monotone increasing sequence of functions. This sequence has a limit which we call f. The limit might be $+\infty$ on some set. Then

$$\lim_{n \to \infty} \int f_n = \liminf_{n \to \infty} \int f_n \ge \int \liminf_{n \to \infty} f_n = \int f$$

and hence if the left side is finite then so is the right and f is finite almost everywhere. On the other hand since $f_n \leq f$ we have that

 $\int f_n \leq \int f$

and therefore

$$\lim_{n \to \infty} \int f_n \le \int f \, .$$

Problem 10 (5 points): Let $E_k \subset \mathbb{R}^d$ be a sequence of measurable sets with $\sum_{k=1}^{\infty} |E_k| < \infty$. Then almost all $x \in \mathbb{R}^d$ are in at most finitely many of the sets E_k .

Solution: Consider the function

$$f(x) = \sum_{n=1}^{\infty} \chi_{E_n}(x)$$

where $\chi_{E_n}(x)$ is the characteristic function of the set E_n . Using the monotone convergence theorem we know that

$$\int f = \lim_{N \to \infty} \int \sum_{n=1}^{N} \chi_{E_n}(x) < \infty \; .$$

This means that the function f is finite almost everywhere. If x is a point that is in infinitely many of the E_n s then f must diverge. But it diverges only on a set of measure zero and hence the set of x that belong to infinitely many of the E_n s is a set of measure zero.