Problem 1 (5 points): Let $C \subset \mathbb{R}^{d}$ be compact and $f: C \rightarrow \mathbb{R}$ a lower semicontinuous function. Prove that f attains its minimum.

Problem 2 (8 points): recall that a function $f:[a, b] \rightarrow \mathbb{R}$ is monotone increasing if $f(x) \leq f(y)$ whenever $x, y \in[a, b]$ and $x \leq y$. The definition of monotone decreasing is similar. Prove that any monotone function is Lebesgue measurable.

Problem 3 (9 points): Let E be a measurable set in \mathbb{R}^{d}. Show that for any $\varepsilon>0$ there exists an open set U and a closed set F such that $F \subset E \subset U$ and $|U \backslash F|<\varepsilon$.

Problem 4 (9 points): Let $E_{1} \subset E_{2} \subset \cdots$ be a sequence of nested measurable sets in \mathbb{R}^{d}. Prove that

$$
\left|\cup_{k=1}^{\infty} E_{k}\right|=\lim _{n \rightarrow \infty}\left|E_{n}\right|
$$

Problem 5 (9 points): In Egorov's theorem we had to assume that $|E|<\infty$. Give an example of a sequence of functions on the whole real line which converges but where Egorov's theorem fails.

