Problem 1 (5 points): Let $C \subset \mathbb{R}^{d}$ be compact and $f: C \rightarrow \mathbb{R}$ a lower semicontinuous function. Prove that f attains its minimum.

Solution: Let $x_{n} \in C$ be a minimizing sequence, i.e.,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\inf _{x \in C} f(x)
$$

Since C is compact, it follows that there exists a sub-sequence, which we again denote by x_{n} and which converges to some point $x \in C$. Since f is lower semicontinuous,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right) \geq f(x)
$$

and hence

$$
\inf _{x \in C} f(x) \geq f(x)
$$

and hence $f(x)=\inf _{x \in C} f(x)$.

Problem 2 (8 points): recall that a function $f:[a, b] \rightarrow \mathbb{R}$ is monotone increasing if $f(x) \leq f(y)$ whenever $x, y \in[a, b]$ and $x \leq y$. The definition of monotone decreasing is similar. Prove that any monotone function is Lebesgue measurable.

Solution: Consider the level set

$$
\{a \leq x \leq b: f(x) \geq t\}
$$

This set is either the empty set, the whole interval, an interval of the form $[c, b]$ or $(c, b]$. This follows from the monotonicity of f. All these sets are measurable.

Problem 3 (9 points): Let E be a measurable set in \mathbb{R}^{d}. Show that for any $\varepsilon>0$ there exists an open set U and a closed set F such that $F \subset E \subset U$ and $|U \backslash F|<\varepsilon$.

Solution: For $\varepsilon>0$ given there exists an open set U with $E \subset U$ and $|U \backslash E|<\varepsilon / 2$. The set E^{c} is also measurable and hence there exists an open set U^{\prime} with $E^{c} \subset U^{\prime}$ such that $U^{\prime} \backslash E^{C} \mid<\varepsilon / 2$. The set $F=U^{\prime c}$ is closed with $F \subset E$. Since

$$
U^{\prime} \backslash E^{c}=E \backslash U^{\prime c}=E \backslash F
$$

we have that

$$
|E \backslash F|<\varepsilon / 2
$$

Finally

$$
|U \backslash F|=|(U \backslash E) \cup(E \backslash F)| \leq|(U \backslash E)|+|(E \backslash F)|<\varepsilon .
$$

Problem 4 (9 points): Let $E_{1} \subset E_{2} \subset \cdots$ be a sequence of nested measurable sets in \mathbb{R}^{d}. Prove that

$$
\left|\cup_{k=1}^{\infty} E_{k}\right|=\lim _{n \rightarrow \infty}\left|E_{n}\right|
$$

Solution: Define the sets $B_{1}=E_{1}$ and for $j \geq 2, B_{j}=E_{j} \backslash E_{j-1}$ and note that these sets are disjoint and for all m

$$
E_{m} \cup_{k=1}^{m} E_{k}=\cup_{j=1}^{m} B_{j} .
$$

Hence,

$$
\left|\cup_{k=1}^{\infty} E_{k}\right|=\left|\cup_{k=1}^{\infty} B_{k}\right|=\sum_{k=1}^{\infty}\left|B_{k}\right|=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|B_{k}\right|=\lim _{n \rightarrow \infty}\left|E_{n}\right|
$$

Problem 5 (9 points): In Egorov's theorem we had to assume that $|E|<\infty$. Give an example of a sequence of functions on the whole real line which converges but where Egorov's theorem fails.

Solution: Take $E=\mathbb{R}$ and consider the sequence $f_{n}(x)=\chi_{[-n, n]}(x)$. This sequence converges pointwise to 1 but not uniform on any unbounded set.

