Homework 1, due Wednesday February 1

I: A linear operator $A: D(A) \to \mathcal{H}$ is closed if and only if the domain D(A) endowed with the norm $||f||_A := \sqrt{||f||^2 + ||Af||^2}$ is a Banach space, i.e., a linear, normed, complete space.

Solution: Assume that A is closed. Let f_n be a Cauchy sequence, i.e., $||f_n - f_m||_A$ tends to zero as $n, m \to \infty$. Since \mathcal{H} is complete, $f_n \to f$ and $Af_n \to g$ in \mathcal{H} . Since A is closed, $f \in D(A)$ and Af = g. Thus, D(A) is a Banach space. Conversely, let $f_n \in D(A)$ with $f_n \to f$ and $Af_n \to g$. This means that f_n is a Cauchy sequence, i.e., $||f_n - f_m||_A$ tends to zero as $n, m \to \infty$. Since D(A) is a Banach space we have that $f \in D(A)$ and Af = g and A is closed.

II: (Reed-Simon Vol. I) Let ϕ be a bounded measurable function on the real line and assume that ϕ is not in $L^2(\mathbb{R})$. Fix a function $\psi \in L^2(\mathbb{R})$ and consider the operator

$$Af = (\phi, f)\psi$$

on the domain

$$D(A) = \{ f \in L^2(\mathbb{R}) : \int_{\mathbb{R}} |f(x)\phi(x)| dx < \infty \}$$

It is clear that all bounded functions of compact support are in D(A) and hence A is densely defined. Compute the adjoint A^* .

Solution: Let $G \in D(A^*)$, i.e., $f \to (g, Af)$ extends to a bounded linear functional on all of $L^2(\mathbb{R})$. Thus,

$$(A^*g, f) = (\phi, f)(g, \psi) .$$

Thus, one might be tempted to write $A^*g = (\psi, g)\phi$, however, $\phi \notin L^2(\mathbb{R})$. Thus, the domain of A^* consists of all functions perpendicular to ψ and the operator A^* is the zero operator.

III: (Reed-Simon Vol. I) Let \mathcal{H} be a Hilbert space and e_n and orthonormal basis in \mathcal{H} and denote by e_{∞} the vector

$$\sum_{n=1}^{\infty} \frac{1}{n} e_n \; .$$

Consider the domain D consisting of *finite* linear combinations of the form

$$ae_{\infty} + \sum c_i e_i$$
,

and on D consider the linear operator

$$A(ae_{\infty} + \sum c_i e_i) = ae_{\infty}$$
.

Show that A is not closable.

Solution: Take the sequence

$$-a\sum_{n=1}^{N}\frac{1}{n}e_{n}$$

so that

$$f_N := ae_\infty - a\sum_{n=1}^N \frac{1}{n}e_n$$

is in D. The sequence converges to zero in \mathcal{H} and the sequence

$$Af_n = ae_\infty$$

obviously converges. But this limit is not zero.

IV: Let A be a densely defined operator on a Hilbert space \mathcal{H} . Show that

$$Ran(A)^{\perp} = Ker(A^*)$$
.

Is it true that

$$Ker(A^*)^{\perp} = Ran(A)$$
?

Solution: $f \in \operatorname{Ran}(A)^{\perp}$ means that (f, Ag) = 0 for all $g \in D(A)$. Hence, since A is densely defined, $f \in D(A^*)$ and $A^*f = 0$. Thus $\operatorname{Ran}(A)^{\perp} \subset \operatorname{Ker}(A^*)$. By the same formula, if $f \in \operatorname{Ker}(A^*)$ then (f, Ag) = 0 for all $G \in D(A)$ and hence $\operatorname{Ran}(A)^{\perp} = \operatorname{Ker}(A^*)$.

It is in general not true that $\operatorname{Ran}(A) = \operatorname{Ker}(A^*)^{\perp}$, because $\operatorname{Ran}(A)$ is in general not closed. As an example, take the operator on $L^2[0,1]$, Af(x) = xf(x). The sequence of characteristic functions

$$\chi_{[1/n,1]}(x)$$

is in Ran(A) since they are the image of $\frac{1}{x}\chi_{[1/n,1]}(x) \in L^2[0,1]$. Thus sequence tends to the function 1 and there is no function f in $L^2[0,1]$ with xf(x) = 1.