Homework 2, due Wednesday March 1

I: Prove that if a closed symmetric operator A has a real number in its resolvent set, then it is self adjoint.

Solution: Let $\lambda \in \mathbb{R}$ be in the resolvent set. Then $(A-\lambda I)^{-1}$ exist as a bounded operator on all of \mathcal{H}. In particular this means that $\operatorname{Ran}(A-\lambda I)=\mathcal{H}$ and since $B=A-\lambda I$ is symmetric, it is self adjoint.

To see this, take $f \in D\left(B^{*}\right)$ and set $g=B^{*} f$. This is defined since $D(B) \subset D\left(B^{*}\right)$. Since B is onto, we may write $g=B h$ for $h \in D(B)$. Thus, for any $u \in D(B)$ we have that

$$
(g, u)=\left(B^{*} f, u\right)=(f, B u),(g, u)=(B h, u)=(h, B u)
$$

and hence we have that $(f-h, B u)=0$ for all $u \in D(B)$. Since B is onto, $f=h$ and $f \in D(B)$.

II: Let A be a self adjoint operator and B be a symmetric operator which is A bounded with bound a. Show that

$$
\limsup _{\mu \rightarrow \infty}\left\|B(A+i \mu I)^{-1}\right\| \leq a
$$

Solution: We have

$$
\left\|B(A+i \mu I)^{-1} f\right\| \leq a\left\|A(A+i \mu I)^{-1} f\right\|+b\left\|(A+i \mu I)^{-1}\right\|
$$

for all $f \in \mathcal{H}$. Further

$$
\|f\|^{2}=\left\|(A+i \mu I)(A+i \mu I)^{-1} f\right\|^{2} \geq\left\|A(A+i \mu I)^{-1} f\right\|^{2}+|\mu|^{2}\left\|(A+i \mu I)^{-1} f\right\|^{2}
$$

we find that

$$
\left\|A(A+i \mu I)^{-1} f\right\| \leq\|f\|
$$

and

$$
\left\|(A+i \mu I)^{-1} f\right\| \leq \frac{\|f\|}{|\mu|}
$$

Hence

$$
\left\|B(A+i \mu I)^{-1} f\right\| \leq a\|f\|+\frac{b}{|\mu|}\|f\|
$$

from which the result follows.

III: With the abbreviation $p=\frac{1}{i} \frac{d}{d x}$ consider the operator $A=p x^{5}+x^{5} p$ on the domain $D(A)=C_{c}^{\infty}(\mathbb{R})$. Prove that A does not have any self adjoint extensions.

Solution: We have to solve the equation $\left(A^{*} \pm i I\right) f=0$. We start by solving the equation

$$
\left(x^{5} f\right)^{\prime}+x^{5} f^{\prime}=\mp f
$$

which leads to

$$
f=C|x|^{-5 / 2} e^{ \pm \frac{1}{8|x|^{2}}}
$$

If we set $f(0)=0$ we see that for the minus sign the function is in $L^{2}(\mathbb{R})$ but not for the plus sign. This suggests that the deficiency indices are (1,0) and hence there is no self adjoint extension.

To prove this is a bit tricky and not required for solving the homework problem. We give only a sketch of how to do that. The function f is $C^{\infty}(\mathbb{R})$ and if $g \in C_{c}^{\infty}(\mathbb{R})$ so is $f g$. For $h \in D\left(A^{*}\right)$ we consider the equation

$$
(h,(A \pm i I)(f g))=0 .
$$

First we note that

$$
A(f g)=-i g f+f \frac{1}{i} 2 x^{5} g^{\prime}
$$

All the computation are justified since the functions are smooth. Hence we get

$$
\left(h,-i f g+f \frac{1}{i} 2 x^{5} g^{\prime} \pm i I f g\right)=0
$$

for all $g \in C_{c}^{\infty}(\mathbb{R})$. Chooing the + sign we get that

$$
\left(h, f \frac{1}{i} 2 x^{5} g^{\prime}\right)=0
$$

which means that

$$
\int_{\mathbb{R}} x^{5} \overline{h(x) f(x)} g^{\prime}(x) d x=0
$$

for all $g \in C_{c}^{\infty}(\mathbb{R})$. It is not difficult although one to think a little bit, that this implies that $x^{5} \overline{h(x) f(x)}$ is constant. Of course this constant should not be zero. Hence

$$
h=C \frac{1}{x^{5} f} \notin L^{2}(\mathbb{R})
$$

and hence there is no solution in $L^{2}(\mathbb{R})$ for the equation $\left(A^{*}-i I\right) h=0$. Now we choose the minus sign and get

$$
\int_{\mathbb{R}} \overline{h(x) f(x)}\left[g+x^{5} g^{\prime}\right](x) d x=0
$$

for all $g \in C_{c}^{\infty}(\mathbb{R})$. This we can write

$$
\int_{\mathbb{R}} \overline{h(x) f(x)} x^{5} e^{\frac{1}{4 x^{4}}}\left[e^{-\frac{1}{4 x^{4}}} g\right]^{\prime}(x) d x=0
$$

Once more the function $e^{-\frac{1}{4 x^{4}}} g \in C_{c}^{\infty}(\mathbb{R})$ and since g is arbitrary we find again that

$$
\overline{h(x) f(x)} x^{5} e^{\frac{1}{4 x^{4}}}=C
$$

a constant. Solving for h yields

$$
h(x)=C \frac{1}{x^{5} f(x)} e^{-\frac{1}{4 x^{4}}}
$$

which is in $L^{2}(\mathbb{R})$.

IV: Let A be a symmetric operator on a Hilbert space. Prove that the following statements are equivalent:
a) A is essentially self adjoint.
b) $\operatorname{Ker}\left(A^{*} \pm i I\right)=\{0\}$
c) $\operatorname{Ran}(A \pm i I)$ is dense.

Solution: Assume that A is essentially self adjoint, i.e., \bar{A} is self adjoint. Since $A^{*}=\bar{A}^{*}$ we have that $\operatorname{Ker}\left(A^{*} \pm i I\right)=\operatorname{Ker}(\bar{A} \pm i I)=\{0\}$. Since $\overline{\operatorname{Ran}(A \pm i I)} \oplus \operatorname{Ker}\left(A^{*} \pm i I\right)=\mathcal{H}$ it follows that $\operatorname{Ran}(A \pm i I)$ is dense if and only if $\operatorname{Ker}\left(A^{*} \pm i I\right)=\{0\}$. It remains to show that if $\overline{\operatorname{Ran}(A \pm i I)}=\mathcal{H}$ then \bar{A} is self adjoint. This follows from $\overline{\operatorname{Ran}(A \pm i I)}=\operatorname{Ran}(\bar{A} \pm i I)$. To see this let $f \in \operatorname{Ran}(\bar{A}+i I)$. There exists $g \in D(\bar{A})$ such that $f=(\bar{A}+i I) g$. There exists a sequence $g_{n} \in D(A)$ such that $g_{n} \rightarrow g$ and $(A+i I) g_{n} \rightarrow f$. Hence $f \in \overline{\operatorname{Ran}(A+i I)}$. Since $\overline{\operatorname{Ran}(A \pm i I)} \subset \operatorname{Ran}(\bar{A} \pm i I)$ the result follows.

V (Reed-Simon Vol. II): Let A be a closed symmetric operator which has a self adjoint extension. Is it possible that A has a closed symmetric extension B that has no self adjoint extension? Explain.

Solution: This is best discussed on the level of the Cayley transform. Let V_{A} be the Cayley transform of A and denote by C a self adjoint extension of A. Then $V_{A}: F \rightarrow G$ is an isometry, where F, G are closed subspaces of \mathcal{H} and V_{A} is onto G. Since C is self adjoint there exist $F_{ \pm}$such that $F \oplus F_{+}=G \oplus F_{-}=\mathcal{H}$ and $\operatorname{dim} F_{+}=\operatorname{dim} F_{-}$. The Cayley transform of B, V_{B}, is an isometry from the closed subspace P onto the closed subspace Q. We have that $P=F \oplus P_{+}$and $Q=G \oplus P_{-}$for some subspace $P_{ \pm}$. Since V_{B} is an isometric extension of V_{A} we must have that $\operatorname{dim} P_{+}=\operatorname{dim} P_{-}$. Since $P_{ \pm}$are subspaces of $F_{ \pm}$this would imply that $\operatorname{dim} F_{+}-\operatorname{dim} P_{+}=\operatorname{dim} F_{-}-\operatorname{dim} P_{-}$and B would have self adjoint extensions, which contradicts our assumption.

