Homework 3, due Wednesday March 29

I: Let \mathcal{A} be a commutative Banach Algebra and \mathcal{I} a closed ideal. Recall that any element in the factor algebra \mathcal{A}/\mathcal{I} is given as an equivalence class [x] where two elements $x, y \in \mathcal{A}$ are equivalent if $x - y \in \mathcal{I}$. Also recall that

$$||[x]|| = \inf_{z \in \mathcal{I}} ||x - z||$$
.

The multiplication of equivalence classes are defined by [x][y] = [xy]. Show that \mathcal{A}/\mathcal{I} is a Banach Algebra.

II: Let \mathcal{A} be a commutative Banach Algebra and $x \in \mathcal{A}$ be an element that has no inverse. Prove that x belongs to a non-trivial maximal ideal.

III: Again, \mathcal{A} is a commutative Banach Algebra. Prove that closed ideal $\mathcal{I} \subset \mathcal{A}$ is a proper subset of a nontrivial ideal if and only if its factor algebra \mathcal{A}/\mathcal{I} has nontrivial ideals.

IV: Show that the Gelfand transform is linear, multiplicative, and that $\hat{e} = 1$.

V : Let e be the unit element in a C^* algebra. Proof that $e^* = e$ and that ||e| = 1