Homework 3, due Wednesday March 29

I: Let \mathcal{A} be a commutative Banach Algebra and \mathcal{I} a closed ideal. Recall that any element in the factor algebra \mathcal{A}/\mathcal{I} is given as an equivalence class [x] where two elements $x, y \in \mathcal{A}$ are equivalent if $x - y \in \mathcal{I}$. Also recall that

$$||[x]|| = \inf_{z \in \mathcal{I}} ||x - z||$$
.

The multiplication of equivalence classes are defined by [x][y] = [xy]. Show that \mathcal{A}/\mathcal{I} is a Banach Algebra.

Solution: a) If x, y are elements in \mathcal{A} we have that

$$[x] + [y] = x + \mathcal{I} + y + \mathcal{I} = [x + y], [\lambda x] = \lambda x + \mathcal{I} = \lambda(x + \mathcal{I}) = \lambda[x].$$

Likewise

$$[x][y] = (x + \mathcal{I})(y + \mathcal{I}) = xy + x\mathcal{I} + \mathcal{I}y + \mathcal{I} = [xy]$$

since \mathcal{I} is an ideal. Hence \mathcal{A}/\mathcal{I} is an algebra.

b) We have that $||[x]|| = \inf_{z \in \mathcal{I}} ||x - z|| \ge 0$. Further $||[0]|| = \inf_{z \in \mathcal{I}} ||0 - z|| = 0$ and if ||[x]|| = 0, there exists a sequence of elements $z_j \in \mathcal{I}$ so that $||x - z_j|| \to 0$ as $j \to \infty$. This means that $z_j \to x$ and since \mathcal{I} is closed, $x \in \mathcal{I}$ and hence [x] = [0]. If $\lambda \in \mathbb{C}$ we have that

$$\|\lambda[x]\| = \inf_{z \in \mathcal{I}} \|\lambda x - z\| = |\lambda| \inf_{z \in \mathcal{I}} \|\lambda x - \frac{z}{\lambda}\| = |\lambda| \|[x]\|$$

If $\lambda = 0$ then $\|\lambda[x]\| = 0 = |\lambda|\|[x]\|$. It remains to show the triangle inequality $\|[x] + [y]\| = \inf_{z \in \mathcal{I}} \|x + y - z\| = \inf_{z, w \in \mathcal{I}} \|x - z + y - w\| \le \inf_{z \in \mathcal{I}} \|x - z\| + \inf_{w \in \mathcal{I}} \|y - w\| = \|[x]\| + \|[y]\|.$

c) We have

$$[x][y]\| = \inf_{z \in \mathcal{I}} \|xy - z\| .$$

Pick $u, v \in \mathcal{I}$ and set $z = xu + vy - vu \in \mathcal{I}$. This element in \mathcal{I} is of a special form and hence $\inf_{z \in \mathcal{I}} \|xy - z\| \le \inf_{u,v \in \mathcal{I}} \|(x - v)(y - u)\| \le \inf_{u,v \in \mathcal{I}} \|(x - v)\| \|(y - u)\| = \|[x]\| \|[y]\|.$

d) We have to show that the quotient algebra is complete. Let $[x_n]$ be a Cauchy sequence. For any $\varepsilon > 0$ there exists N so that $||[x_n] - [x_m]|| < \varepsilon$ for n, m > N. There exists a subsequence, again denoted by $[x_n]$ such that $||[x_n] - [x_{n+1}]|| \le 2^{-n}$. Now $||[x_n] - [x_{n+1}]|| = \inf_{z \in \mathcal{I}} ||x_n - x_{n+1} - z||$ and hence there are representatives in the class, which we call again x_n such that

$$||x_n - x_{n+1}|| \le 2^{-n+1}$$

Thus, x_n is a Cauchy sequence in \mathcal{A} and since \mathcal{A} is complete there exists $x \in \mathcal{A}$ with $||x_n - x|| \to 0$ as $n \to \infty$. Hence,

$$||[x_n] - [x]|| = \inf_{z \in \mathcal{I}} ||x_n - x - z|| \le ||x_n - x|| \to 0$$

as $n \to \infty$. It is then easy to see that the whole Cauchy sequence converges to [x].

II: Let \mathcal{A} be a commutative Banach Algebra and $x \in \mathcal{A}$ be an element that has no inverse. Prove that x belongs to a non-trivial maximal ideal.

Solution: Consider the set

$$\mathcal{I} := \{ y \in \mathcal{A} : y = xz, z \in \mathcal{A} \} .$$

Obviously $x \in \mathcal{I}$. This set is an algebra; if $y_1, y_2 \in \mathcal{I}$ so is its sum and scalar multiples and also y_1y_2 . This set is an ideal. If $u \in \mathcal{A}$ and $y \in \mathcal{I}$ then y = xz and hence $uy = uzx \in \mathcal{I}$. This ideal is not the zero ideal. Moreover, it is not all of \mathcal{A} , because unless x = 0 there exists $\lambda \in \mathbb{C}$ such that $\lambda e - x$ is invertibel. However all the elements in \mathcal{I} are not invertible. Hence \mathcal{I} is a proper ideal and we know from the class than any proper ideal is contained in a proper maximal ideal.

III: Again, \mathcal{A} is a commutative Banach Algebra. Prove that closed ideal $\mathcal{I} \subset \mathcal{A}$ is a proper subset of a nontrivial ideal if and only if its factor algebra \mathcal{A}/\mathcal{I} has nontrivial ideals.

Solution: Suppose that $\mathcal{I} \subset \mathcal{J} \subset \mathcal{A}$, $\mathcal{I} \neq \mathcal{J}$ and $\mathcal{J} \neq \mathcal{A}$. In the equivalence class $[x]_{\mathcal{I}} = x + \mathcal{I}$ take any two elements and declare them as equivalent if their difference is in \mathcal{J} . This defines a non-trivial ideal in the factor algebra \mathcal{A}/\mathcal{I} . The converse is similar.

IV: Show that the Gelfand transform is linear, multiplicative, and that $\hat{e} = 1$.

Solution: recall the definition of the Gelfand transform. There is a one-to-one correspondence between maximal ideals and multiplicative functionals. Let M be such a maximal ideal and f_M the corresponding multiplicative functional. The Gelfand transform is the map that associates for any $x \in \mathcal{A}$ the number $f_M(x)$. We have to consider this as a function on the compact space of maximal ideals. We denote this map by $\gamma(x)$, i.e., $\gamma(x) = f_M(x)$. Again, for every $x \in \mathcal{A} \gamma(x)$ is a function on the space of maximal ideals of \mathcal{A} . Now for $x, y \in \mathcal{A}$ and any M we have that

$$\gamma(xy) = f_M(xy) = f_M(x)f_M(y) = \gamma(x)\gamma(y)$$
 .

moreover $\gamma(e) = f_M(e) = 1$, since f_M is a multiplicative functional.

V: Let e be the unit element in a C^* algebra. Prove that $e^* = e$ and that ||e|| = 1

For any element $x \in \mathcal{A}$, $e^*x = (x^*e)^* = (x^*)^* = x$ and since the unit element is unique, $e^* = e$. Since \mathcal{A} is a C^* algebra we have that $||e|| = ||e^*e|| = ||e||^2$ and hence ||e|| = 1.