Homework 3, due Wednesday March 29

I: Let \mathcal{A} be a commutative Banach Algebra and \mathcal{I} a closed ideal. Recall that any element in the factor algebra $\mathcal{A} / \mathcal{I}$ is given as an equivalence class $[x]$ where two elements $x, y \in \mathcal{A}$ are equivalent if $x-y \in \mathcal{I}$. Also recall that

$$
\|[x]\|=\inf _{z \in \mathcal{I}}\|x-z\| .
$$

The multiplication of equivalence classes are defined by $[x][y]=[x y]$. Show that $\mathcal{A} / \mathcal{I}$ is a Banach Algebra.

Solution: a) If x, y are elements in \mathcal{A} we have that

$$
[x]+[y]=x+\mathcal{I}+y+\mathcal{I}=[x+y],[\lambda x]=\lambda x+\mathcal{I}=\lambda(x+\mathcal{I})=\lambda[x] .
$$

Likewise

$$
[x][y]=(x+\mathcal{I})(y+\mathcal{I})=x y+x \mathcal{I}+\mathcal{I} y+\mathcal{I}=[x y]
$$

since \mathcal{I} is an ideal. Hence $\mathcal{A} / \mathcal{I}$ is an algebra.
b) We have that $\|[x]\|=\inf _{z \in \mathcal{I}}\|x-z\| \geq 0$. Further $\|[0]\|=\inf _{z \in \mathcal{I}}\|0-z\|=0$ and if $\|[x]\|=0$, there exists a sequence of elements $z_{j} \in \mathcal{I}$ so that $\left\|x-z_{j}\right\| \rightarrow 0$ as $j \rightarrow \infty$. This means that $z_{j} \rightarrow x$ and since \mathcal{I} is closed, $x \in \mathcal{I}$ and hence $[x]=[0]$. If $\lambda \in \mathbb{C}$ we have that

$$
\|\lambda[x]\|=\inf _{z \in \mathcal{I}}\|\lambda x-z\|=|\lambda| \inf _{z \in \mathcal{I}}\left\|\lambda x-\frac{z}{\lambda}\right\|=|\lambda|\|[x]\| .
$$

If $\lambda=0$ then $\|\lambda[x]\|=0=|\lambda|\|[x]\|$. It remains to show the triangle inequality $\|[x]+[y]\|=$ $\inf _{z \in \mathcal{I}}\|x+y-z\|=\inf _{z, w \in \mathcal{I}}\|x-z+y-w\| \leq \inf _{z \in \mathcal{I}}\|x-z\|+\inf _{w \in \mathcal{I}}\|y-w\|=\|[x]\|+\|[y]\|$.
c) We have

$$
\|[x][y]\|=\inf _{z \in \mathcal{I}}\|x y-z\|
$$

Pick $u, v \in \mathcal{I}$ and set $z=x u+v y-v u \in \mathcal{I}$. This element in \mathcal{I} is of a special form and hence

$$
\inf _{z \in \mathcal{I}}\|x y-z\| \leq \inf _{u, v \in \mathcal{I}}\|(x-v)(y-u)\| \leq \inf _{u, v \in \mathcal{I}}\|(x-v)\|\|(y-u)\|=\|[x]\|\|[y]\|
$$

d) We have to show that the quotient algebra is complete. Let $\left[x_{n}\right]$ be a Cauchy sequence. For any $\varepsilon>0$ there exists N so that $\left\|\left[x_{n}\right]-\left[x_{m}\right]\right\|<\varepsilon$ for $n, m>N$. There exists a subsequence, again denoted by $\left[x_{n}\right]$ such that $\left\|\left[x_{n}\right]-\left[x_{n+1}\right]\right\| \leq 2^{-n}$. Now $\left\|\left[x_{n}\right]-\left[x_{n+1}\right]\right\|=$ $\inf _{z \in \mathcal{I}}\left\|x_{n}-x_{n+1}-z\right\|$ and hence there are representatives in the class, which we call again x_{n} such that

$$
\left\|x_{n}-x_{n+1}\right\| \leq 2^{-n+1}
$$

Thus, x_{n} is a Cauchy sequence in \mathcal{A} and since \mathcal{A} is complete there exists $x \in \mathcal{A}$ with $\left\|x_{n}-x\right\| \rightarrow$ 0 as $n \rightarrow \infty$. Hence,

$$
\left\|\left[x_{n}\right]-[x]\right\|=\inf _{z \in \mathcal{I}}\left\|x_{n}-x-z\right\| \leq\left\|x_{n}-x\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. It is then easy to see that the whole Cauchy sequence converges to $[x]$.

II: Let \mathcal{A} be a commutative Banach Algebra and $x \in \mathcal{A}$ be an element that has no inverse. Prove that x belongs to a non-trivial maximal ideal.

Solution: Consider the set

$$
\mathcal{I}:=\{y \in \mathcal{A}: y=x z, z \in \mathcal{A}\} .
$$

Obviously $x \in \mathcal{I}$. This set is an algebra; if $y_{1}, y_{2} \in \mathcal{I}$ so is its sum and scalar multiples and also $y_{1} y_{2}$. This set is an ideal. If $u \in \mathcal{A}$ and $y \in \mathcal{I}$ then $y=x z$ and hence $u y=u z x \in \mathcal{I}$. This ideal is not the zero ideal. Moreover, it is not all of \mathcal{A}, because unless $x=0$ there exists $\lambda \in \mathbb{C}$ such that $\lambda e-x$ is invertibel. However all the elements in \mathcal{I} are not invertible. Hence \mathcal{I} is a proper ideal and we know from the class than any proper ideal is contained in a proper maximal ideal.

III: Again, \mathcal{A} is a commutative Banach Algebra. Prove that closed ideal $\mathcal{I} \subset \mathcal{A}$ is a proper subset of a nontrivial ideal if and only if its factor algebra $\mathcal{A} / \mathcal{I}$ has nontrivial ideals.

Solution: Suppose that $\mathcal{I} \subset \mathcal{J} \subset \mathcal{A}, \mathcal{I} \neq \mathcal{J}$ and $\mathcal{J} \neq \mathcal{A}$. In the equivalence class $[x]_{\mathcal{I}}=x+\mathcal{I}$ take any two elements and declare them as equivalent if their difference is in \mathcal{J}. This defines a non-trivial ideal in the factor algebra $\mathcal{A} / \mathcal{I}$. The converse is similar.

IV: Show that the Gelfand transform is linear, multiplicative, and that $\widehat{e}=1$.

Solution: recall the definition of the Gelfand transform. There is a one-to-one correspondence between maximal ideals and multiplicative functionals. Let M be such a maximal ideal and f_{M} the corresponding multiplicative functional. The Gelfand transform is the map that associates for any $x \in \mathcal{A}$ the number $f_{M}(x)$. We have to consider this as a function on the compact space of maximal ideals. We denote this map by $\gamma(x)$, i.e., $\gamma(x)=f_{M}(x)$. Again, for every $x \in \mathcal{A} \gamma(x)$ is a function on the space of maximal ideals of \mathcal{A}. Now for $x, y \in \mathcal{A}$ and any M we have that

$$
\gamma(x y)=f_{M}(x y)=f_{M}(x) f_{M}(y)=\gamma(x) \gamma(y)
$$

moreover $\gamma(e)=f_{M}(e)=1$, since f_{M} is a multiplicative functional.
\mathbf{V} : Let e be the unit element in a C^{*} algebra. Prove that $e^{*}=e$ and that $\|e\|=1$

For any element $x \in \mathcal{A}, e^{*} x=\left(x^{*} e\right)^{*}=\left(x^{*}\right)^{*}=x$ and since the unit element is unique, $e^{*}=e$. Since \mathcal{A} is a C^{*} algebra we have that $\|e\|=\left\|e^{*} e\right\|=\|e\|^{2}$ and hence $\|e\|=1$.

