Homework 4, due Wednesday April 5

I: Let x be an element of a Banach algebra \mathcal{A} with in involution $x \to x^*$. Assume that for all $x \in \mathcal{A}$, $||x||^2 \leq ||xx^*||$. Show that \mathcal{A} is a C^* algebra.

Solution: We have that

 $||x||^2 \le ||xx^*|| \le ||x|| ||x^*||$

and hence $||x|| \leq ||x^*||$. Similarly we find that $||x^*|| \leq ||x||$ and hence $||x|| = ||x^*||$. Thus, $||x||^2 \leq ||xx^*|| \leq ||x|| ||x^*|| = ||x||^2$ and \mathcal{A} is a C^* algebra.

II: Consider the set \mathcal{A} of continuous complex valued functions on the closed disk $D = \{z : |z| \leq 1\}$ in the complex plane that are analytic in the interior of D. Let $||f|| = \sup_{|z|\leq 1} |f(z)|$. Show that \mathcal{A} is a commutative Banach algebra with unit. (Hint: Cauchy's theorem might come in handy).

Solution: That these functions form an algebra is obvious. We have to show that ||f|| defines a norm. It is clear that if ||f|| = 0 the f = -0. That $||\lambda f|| = |\lambda|||f||$ and that $||f+g|| \le ||f|| + ||g||$ is obvious. Likewise, $\sup_{|z|\leq 1} |f(z)g(z)| \le \sup_{|z|\leq 1} |f(z)| \sup_{|z|\leq 1} |g(z)|$ which shows that $||fg|| \le ||f|| ||g||$. The unit element is given by the function which is identically equals to 1. It remains to show completeness. Let f_n be a Cauchy sequence. This means that the sequence is a uniform Cauchy sequence on the closed unit disk and hence converges uniformly on the closed disk to a function \tilde{f} which is continuous on the closed disk. We have to show that this function is analytic. Pick any z in the interior of D. By Cauchy's theorem we have that

$$f_n(z) = \frac{1}{2\pi i} \int_C \frac{f_n(\zeta)}{z - \zeta} d\zeta$$

where C is the boundary of the unit disk. Define

$$f(z) = \frac{1}{2\pi i} \int_C \frac{\tilde{f}(\zeta)}{z - \zeta} d\zeta$$

which is analytic in the interior of D and continuous on D. Moreover,

$$|f(z) - f_n(z)| \le \frac{1}{\operatorname{dist}(z, \mathbf{C})} \sup_{|\zeta|=1} |\tilde{f}(\zeta) - f_n(\zeta)| \to 0$$

and hence $f(z) = \tilde{f}(z)$ which is hence analytic in the interior.

III: With the same setup as in the previous problem, show that $f^*(z) = \overline{f(\overline{z})}$ defines an isometric involution in \mathcal{A} .

Solution: The function $f^*(z)$ is analytic in the interior and hence * defines an involution. It is isometric, since by the maximum principle

$$||f|| = \max_{\substack{|z|=1\\1}} |f(z)|$$

and

 $\mathbf{2}$

$$||f^*|| = \max_{|z|=1} |\overline{f}(\overline{z})| = \max_{|z|=1} |f(\overline{z})| = \max_{|z|=1} |f(z)| = ||f||.$$

IV: Let \mathcal{H} be a Hilbert space and $L(\mathcal{H})$ with the operator norm is the space of bounded operators. Show that $L(\mathcal{H})$ is a (non-commutative) C^{*} algebra.

Solution: Recall that the set bounded linear operators from a normed space to a Banach space forms itself a Banach space. Moreover, $||AB|| \leq ||A|| ||B||$. The only condition not completely obvious is that

$$||A||^2 = \sup_{||x||=1} ||Ax||^2 = \sup_{||x||=1} \langle x, A^*Ax \rangle = ||AA^*||$$

since A^*A is self adjoint.

V: Show that the space of compact operators form a closed subalgebra without unit of $L(\mathcal{H})$.

Solution: This follows from the fact that the limit of a sequence of compact operators that converge in the operator norm is again a compact operator. Moreover the identity operator is not a compact operator if the Hilbert is not finite dimensional.