
C∗ ALGEBRAS

1. The commutative case

We shall assume that A is a Banach Algebra. A map ? : A → A is called an involution if
(x∗)∗ = x, λx + muy)∗ = λx∗ + µy∗ and (xy)∗ = y∗x∗. An element x with x = x∗ is called
self adjoint. If x ∈ A define the self adjoint elements

y =
1

2
(x+ x∗) , z =

1

2i
(x− x∗)

and note that x = y + iz.

Definition 1.1. An algebra with involution is called symmetric if and only if for every
x ∈ A, x̂∗(M) = x̂(M).

Definition 1.2. A Banach Algebra with an involution is called a C∗ algebra if and only if

‖xx∗‖ = ‖x‖‖x∗‖ .
Theorem 1.3. Gelfand-Naimark If A is a commutative C∗ algebra, then the Gelfand Trans-
form is an isometric isomorphism between the algebra A and C(M(A)). Moreover,we have
that

(x̂(M))∗ = x̂(M) = x̂∗(M) .

Proof. Recall that a Banach Algebra that is symmetric and regular is isometrically isomorphic
to the algebra of continuous functions over the compact space of maximal ideals. Hence, we
show that A is symmetric and regular. Let x ∈ A and note that

‖(xx∗)2‖ = ‖(xx∗)(xx∗)∗‖ = ‖xx∗‖2 = ‖x‖2‖x∗‖2 .
Further

‖x2(x∗)2‖ = ‖x2(x2)∗‖ = ‖x2‖‖(x∗)2‖
and hence

‖x‖2‖x∗‖2 = ‖x2‖‖(x∗)2‖ ≤ ‖x‖2‖x∗‖2 .
Thus, ‖x2‖ = ‖x‖2 and the algebra is regular. We show that the algebra is symmetric. Let
f ∈ A∗ be a multiplicative functional. If x ∈ A with x = x∗ we shall show that f(x) is real.
Suppose not. Then f(x) = a + ib with b 6= 0. This means that the element y = 1

b
(x − ae)

satisfies f(y) = i. Hence, y− ie is not invertible and hence (h− ie)∗ = h+ ie is not invertible
either and there exists a multiplicative functional f0 with f0(h) = −i. For any number c ∈ R
we have that

f(h+ ice) = (1 + c)i , f0(h− ice) = −(1 + c)i .

Thus, we have that 1 + c ≤ |f(h+ ice)| ≤ ‖h+ ice‖ and similarly 1 + c ≤ ‖h− ice‖. Hence

‖h2 + t2e‖ = ‖(h+ ice)(h+ ice)∗‖ = ‖(h+ ice)‖‖(h+ ice)∗‖ ≥ (1 + t)2

and since ‖h2 + t2e‖ ≤ ‖h2‖+ t2 this leads to a contradiction for t large. Hence, f(x) ∈ R for
all self adjoint elements. Hence, for a general x ∈ A we have

f(x) = f(y + iz) = f(y) + if(z) , f(x∗) = f(y − iz) = f(y)− if(z) = f(x)

because y, z are self adjoint. Hence, A is symmetric. �
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2. Application to spectral theory

We apply this theorem to spectral theory and follow closely the text of Edelman, Milman
and Tsolomitis. Consider the set of all pairwise commuting normal operators on a Hilbert
space H. An operator A is normal if AA∗ = A∗A. By considering polynomials p(w, z) in two
variables, we see that expressions of the form p(A,A∗) generate an algebra. The norm on
this algebra is the standard operator norm and we may take the closure of the algebra with
respect to that norm. This yields a commutative Banach Algebra A. For any element A ∈ A
we have that

‖A‖‖A∗‖ = ‖AA∗‖ .
This follows from the fact that AA∗ is self adjoint and hence

‖AA∗‖ = sup
‖x‖=1

(x,AA∗x) = sup
‖x‖=1

‖A∗x‖2 = ‖A∗‖2

and the fact that ‖A∗‖ = ‖A‖. Hence, A is a C∗ algebra. Recall, that the Gelfand Transform is
an isometric isomorphism between A and C(M(A)). Hence, for every function f ∈ C(M(A))
there exists and element Tf : H → H. The map f → Tf is linear and multiplicative, i.e.,
Tf+g = Tf + Tg, Tλf = λTf and Tfg = TfTg. Moreover, T ∗f = Tf , in particular for f real,
T ∗f = Tf and Tf is self adjoint. As a consequence for f ≥ 0 we have that

Tf = T√fT
√
f = T ∗√fT

√
f ≥ 0

as operator on H. Pick any two vectors x, y ∈ H and form

〈Tfx, y〉 .

For x, y fixed, the functional f → 〈Tfx, y〉 is bounded and linear as a functional on C(M(A))
and hence there exists a regular signed Borel measure such that

〈Tfx, y〉 =

∫
M
fdµx,y .

we work out some properties of this measure. We define

‖µx,y‖ = sup
‖f‖=1

|
∫
M
fdµx,y| .

Hence

‖µx,y‖ ≤ ‖Tf‖‖x‖‖y‖ = ‖f‖‖x‖‖y‖
so that

‖µx,y‖ ≤ ‖x‖‖y‖ .
Further

µx,y = µy,x

which follows from

〈Tfy, x〉 = 〈x, Tfy〉 = 〈T ∗f x, y〉 = 〈Tfx, y〉 .
We also have the polarization identity

〈Tfx, y〉 =

1

4
[(〈Tf (x+ y), (x+ y)〉 − 〈Tf (x− y), (x− y)〉)− i (〈Tf (x+ iy), (x+ iy)〉 − 〈Tf (x− iy), (x− iy)〉)]
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thus, in terms of the measure we have

µx,y =
1

4
[(µx+y,x+y − µx−y,x−y)− i (µx+iy,x+iy − µx−iy,x−iy)] .

The measure is linear in x and conjugate linear in y. For f ≥ 0 we have that

|〈Tfx, y〉| = 〈T√fx, T√fy〉 ≤ ‖T√fx‖‖T√fy‖
so that

|〈Tfx, y〉|2 ≤ 〈Tfx, x〉〈Tfy, y〉 .
In terms of µ this reads

|
∫
M
fdµx,y|2 ≤

∫
M
fdµx,x

∫
M
fdµy,y .

Once more, we gat as a consequence the previous inequality, because∫
M
fdµx,x ≤ ‖f‖

∫
M
dµx,x = ‖f‖‖x‖2 .

The measure µx,x is positive, since for f ≥ 0, 〈Tfx, x〉 = ‖T√fx‖2. The goal is to define Tχ
where χ is a bounded Borel function. For such a χ we may define∫

M
χdµx,x

which makes sense, because the measure is positive. In particular we have that∫
M
χEdµx,x ≤ ‖χ‖∞

∫
M
dµx,x = ‖χ‖∞‖x‖2 .

Using the polarization identity the following integral is defined∫
M
χdµx,y .

It is linear in x and conjugate linear in y and bounded. Hence there exists a bounded operator
which we denote by Tχ such that

〈Tχx, y〉 =

∫
M
χdµx,y .

We have to check a number of properties:

a) Tχ = T ∗χ

b) Tχ1χ2 = Tχ1Tχ2

c) If S ∈ L(H), STf = TfS for all f ∈ C(M), then STχ = TχS.
The following comes in handy.

Lemma 2.1. let χ be a Borel function and let ε > 0 be given. There exists a function
f ∈ C(M) such that for all x ∈ H∫

M
|χ− f |dµx,x ≤ ε‖x‖2 .

This follows from the regularity of Borel measures.
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Corollary 2.2. For every x, y ∈ mathcalH and ε > 0 there exists f ∈ C(M), such that

|
∫
M
χdµx,y −

∫
M
fdµx,y| < ε‖x‖‖y‖ .

With the help of these approximations the statements a), b) and c) are evident.

Corollary 2.3. Let χ be the characteristic function of a Borel set. Then

T 2
χ = Tχ

and
T ∗χ = Tχ

i.e., Tχ is a self adjoint projection.

Proof.
T 2
χ = TχTχ = Tχ2 = Tχ ,

and
T ∗χ = Tχ = Tχ .

�

3. Cyclic vectors

Pick any x ∈ H and consider the space spanned by

Tfx , f ∈ C(M) .

The closure of this set form a subspace Hx of H. We define a map U from C(M) to Hx by
setting

Uf = Tfx .

The map is clearly linear and we have that

‖Uf‖2 = ‖Tfx‖2 = 〈x, T ∗fTfx〉 = 〈xT|f |2x〉 =

∫
M
|f |2µx,x .

Hence the map U is unitary from L2(dµx.x) to the Hilbert space Hx. In particular for Tg we
have that

U∗TgUf = U∗TgTfx = U∗Tgfx = U∗U(gf) = gf

and the operator Tg is unitarily equivalent to multiplication by g on L2(dµx,x). Next, consider
y ⊥ Hx this leads to a Hilbert spaceHy and the same considerations apply. A simple argument
using Zorn’s lemma leads to the existence of a unitary

U : ⊕α∈IL2(M, µxα,xα)→ H
so that the restriction of any element in A to Hxα is unitarily equivalent to a multiplication
operator.

4. Non-commutative C∗ algebras

One knows from operator theory that for any two linear operators x, y the spectrum of xy
is the same as the spectrum of yx. This remains true in an abstract setting.

Lemma 4.1. Let A be a C∗ algebra with unit element e. Then for any two elements x, y ∈ A
σ(xy) ∪ {0} = σ(yx) ∪ {0}.
Proof. The proof is simple and left as an exercise. �


