A SHORT REMARK ABOUT L^{2}-SPACES

In this section we establish that the space of all square integrable functions form a Hilbert space. To start, consider all continuous functions on some interval I which may be the half line or the whole real line and define

$$
L^{2}(I)=\left\{f: \int_{I}|f(x)|^{2} d x<\infty\right\}
$$

It is quite easy to verify that $L^{2}(I)$ is a linear space with inner product

$$
(f, g)=\int_{I} \overline{f(x)} g(x) d x
$$

Unfortunately, this spaces is not complete. Consider $I=[-1,1]$ and the sequence of functions $f^{(k)}(x)=-1$ for $-1 \leq x \leq-\frac{1}{k}, f^{(k)}(x)=k x$ for $-\frac{1}{k} \leq x \leq \frac{1}{k}$ and $f^{(k)}(x)=1$ for $\frac{1}{k} \leq x \leq 1$. Clearly these functions are continuous for each $k=1,2, \ldots$ If $\ell \geq k$ we have that

$$
\int_{I}\left|f^{(\ell)}(x)-f^{(k)}(x)\right|^{2} d x=\int_{-\frac{1}{k}}^{\frac{1}{k}}\left|f^{(\ell)}(x)-f^{(k)}(x)\right|^{2} d x \leq 4 \times \frac{2}{k}
$$

from which we see that $f^{(k)}$ is a Cauchy sequence. The limit of this sequence, however, is not a continuous function and the limit is not in our linear space. There is a process of completing this space at the price that the integral has to be interpreted according to Lebesgue.

The idea is the following. Consider a positive function f and we want to give a definition of

$$
\int_{I} f(x) d x
$$

We interpret this integral as the area underneath the graph of f over I. One way of approximating this area is according to Riemann which you have learned in your analysis course. Another one is to look at the length of the level sets of the function f which is given by

$$
\{x \in I: f(x)>t\}
$$

If we denote by $|\{x \in I: f(x)>t\}|$ the length of these level sets we can think of the area as

$$
\begin{equation*}
\int_{0}^{M}|\{x \in I: f(x)>t\}| d t \tag{1}
\end{equation*}
$$

where M is the maximal value of f. Note that $|\{x \in I: f(x)>t\}|$ is a decreasing function of t and hence it is Riemann integrable.

Now observe, that the level sets can be quite crazy sets that do not necessarily have a length. So the first step is to state properties that such sets must have in order to have a chance of making sense out of this integral. We call such sets measurable and require the following:
a) If $A \subset I$ is measurable, so is its complement A^{c}.
b) I is measurable.
c) If A_{1}, A_{2}, \ldots is a countable family of measurable sets, then their union is also measurable. Any collection of sets that have the above properties we call a sigma algebra.

In a further step we now define what we mean by the volume of such sets,i.e., the measure of such sets. A measure μ is a function from a sigma algebra Σ into the positive real numbers that has the following properties
a) $\mu(A) \leq \mu(B)$ if $A \subset B$ and $A, B \in \Sigma$.
b) Let A_{1}, A_{2}, \ldots be a countable collection of disjoint sets in Σ. Then

$$
\mu\left(\cup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} \mu\left(A_{j}\right)
$$

This last property is called countable additivity of the the measure μ. This property is the key in establishing completeness of spaces of integrable functions.

A consequence of the countable additivity are the following two statements:
a) If $A_{1} \subset A_{2} \subset \cdots$ is an increasingly nested sequence of sets in Σ, then

$$
\lim _{N \rightarrow \infty} \mu\left(\cup_{j=1}^{N} A_{j}\right)=\mu\left(\cup_{j=1}^{\infty} A_{j}\right)
$$

and
b) If $A_{1} \supset A_{2} \supset \cdots$ is a decreasingly nested sequence of set in Σ, then

$$
\lim _{N \rightarrow \infty} \mu\left(\cap_{j=1}^{N} A_{j}\right)=\mu\left(\cap_{j=1}^{\infty} A_{j}\right) .
$$

Now we close in on our definition of the integral. A function $f: I \rightarrow \mathbb{R}_{+}$is measurable if the sets $\{x \in I: f(x)>t\}$ are measurable for all $t \in \mathbb{R}$.

Given a non-negative measurable function f and a measure μ we say that the function is summable or integrable if

$$
\int_{I} f(x) \mu(d x):=\int \mu(\{x \in I: f(x)>t\}) d t<\infty
$$

where, as before, the last integral is a Riemann integral, since the function $t \rightarrow \mu(\{x \in I$: $f(x)>t\})$ is decreasing.

Remark 0.1. There could be sets that have zero measure. Thus modifying the function on a set of zero measure would not affect the integral. We say that a certain property holds almost everywhere with respect to μ if the set where the property does not hold has zero μ measure.

There are two important theorems that follow from these definitions.
Theorem 0.2. Monotone convergence Let $f^{(k)}$ be a sequence of summable functions and assume $f^{(k)}(x) \leq f^{(k+1)}(x)$ for almost all $x \in I$ and assume that $\int_{I}\left[f^{(k)}(x)-f^{(1)}(x)\right] \mu(d x)$ is uniformly bounded. Then the limit

$$
\lim _{k \rightarrow \infty} f^{(k)}(x):=f(x)
$$

exists for almost every x and is measurable. Moreover,

$$
\lim _{k \rightarrow \infty} \int_{I} f^{(k)}(x) \mu(d x)=\int_{I} f(x) \mu(d x)
$$

in the sense that if one of the quantities is infinite so is the other.
The other important theorem is

Theorem 0.3. Dominated convergence Let $f^{(k)}(x)$ be a sequence of summable functions that converges almost everywhere with respect to μ to a function f. If there exists a summable function $G(x)$ such that

$$
\left|f^{(k)}(x)\right| \leq G(x)
$$

for all $k=1,2,3, \ldots$, then $f(x)$ is measurable, summable and

$$
\lim _{k \rightarrow \infty} \int_{I} f^{(k)}(x) \mu(d x)=\int_{I} f(x) \mu(d x) .
$$

The big questions is whether such σ algebras and measures exist. This is the hard part of the theory and you are referred to the books on measure theory. on the real line there exists a unique translation invariant measure \mathcal{L}, the Lebesgue measure. Translation invariant means that $\mathcal{L}(B)=\mathcal{L}(A)$ whenever B is a translate of A.

The beauty of all this is that it works in great generality. We can replace the interval I by any set Ω and μ be any measure on a sigma algebra of subsets of Ω. The theorems stated above continue to hold in this case too.

Definition 0.4. $L^{2}(\Omega, \mu)$-space This space consists of all square summable functions $f: \Omega \rightarrow$ \mathbb{C}.

We are ready to state the important
Theorem 0.5. Riesz-Fischer The space $L^{2}(\Omega, \mu)$ endowed with the inner product

$$
(f, g)=\int_{\Omega} \overline{f(x)} g(x) \mu(d x)
$$

is a Hilbert space.
Proof. Let $f^{(k)}$ be a Cauchy sequence in $L^{2}(\Omega, \mu)$. This means that for any $\varepsilon>0$ there exists N so that for all $k, \ell>N$

$$
\left\|f^{(k)}-f^{(\ell)}\right\|<\varepsilon
$$

Hence, there exists k_{1} so that for all $\ell>k_{1}$

$$
\left\|f^{\left(k_{1}\right)}-f^{(\ell)}\right\|<\frac{1}{2}
$$

Likewise, there exists $k_{2}>k_{1}$ so that for all $\ell>k_{2}$

$$
\left\|f^{\left(k_{2}\right)}-f^{(\ell)}\right\|<\frac{1}{2^{2}}
$$

Continuing this way we find a sequence $k_{1}, k_{2}, k_{3}, \ldots$ such that for all $j=1,2, \ldots$

$$
\left\|f^{\left(k_{j}\right)}-f^{\left(k_{j+1}\right)}\right\|<\frac{1}{2^{j}}
$$

Now consider the sequence $f^{\left(k_{j}\right)}$ and write

$$
f^{\left(k_{j}\right)}=f^{\left(k_{1}\right)}+\left[f^{\left(k_{2}\right)}-f^{\left(k_{1}\right)}\right]+\left[f^{\left(k_{3}\right)}-f^{\left(k_{2}\right)}\right]+\cdots+\left[f^{\left(k_{j}\right)}-f^{\left(k_{j-1}\right)}\right]
$$

If we set

$$
F^{(j)}=\left|f^{\left(k_{1}\right)}\right|+\left|f^{\left(k_{2}\right)}-f^{\left(k_{1}\right)}\right|+\left|f^{\left(k_{3}\right)}-f^{\left(k_{2}\right)}\right|+\cdots+\left|f^{\left(k_{j}\right)}-f^{\left(k_{j-1}\right)}\right|,
$$

we obviously have that

$$
\left|f^{\left(k_{j}\right)}\right| \leq F^{(j)}
$$

The sequence $F^{(j)}(x)$ is a monotone increasing sequence and hence converges to a function $F(x)$. This implies that the sequence $f^{\left(k_{j}\right)}(x)$ converges to some function $f(x)$ since the partial sums converge absolutely. Further,

$$
\left\|F^{(j)}\right\| \leq\left\|f^{\left(k_{1}\right)}\right\|+\left\|f^{\left(k_{2}\right)}-f^{\left(k_{1}\right)}\right\|+\left\|f^{\left(k_{3}\right)}-f^{\left(k_{2}\right)}\right\|+\cdots+\left\|f^{\left(k_{j}\right)}-f^{\left(k_{j-1}\right)}\right\|
$$

which is bounded above by

$$
\left\|f^{\left(k_{1}\right)}\right\|+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{j}}<\left\|f^{\left(k_{1}\right)}\right\|+1 .
$$

Hence by the monotone convergence theorem we find that F is square summable and

$$
\left|f^{\left(k_{j}\right)}(x)-f(x)\right| \leq\left|f^{\left(k_{j}\right)}(x)\right|+|f(x)| \leq 2 F(x)
$$

Since $f^{\left(k_{j}\right)}(x)$ converges to $f(x)$ for every x we have by the dominated convergence theorem that

$$
\lim _{j \rightarrow \infty} \int_{\Omega}\left|f^{\left(k_{j}\right)}(x)-f(x)\right|^{2} \mu(d x)=0
$$

In other words we have for the subsequence k_{j} that

$$
\lim _{j \rightarrow \infty}\left\|f^{\left(k_{j}\right)}-f\right\|=0 .
$$

We have to show that the whole sequence converges. For this, fix and $\varepsilon>0$ and pick N such that for $k_{j}>N,\left\|f^{\left(k_{j}\right)}-f\right\|<\varepsilon / 2$ and for $\ell>N,\left\|f^{\left(k_{j}\right)}-f^{(\ell)}\right\|<\varepsilon / 2$. Then for all $\ell>N$

$$
\left\|f^{(\ell)}-f\right\| \leq\left\|f^{\left(k_{j}\right)}-f^{(\ell)}\right\|+\left\|f^{\left(k_{j}\right)}-f\right\|<\varepsilon .
$$

