
1. The Theorem of Hille and Yosida concerning semi-groups

From now we consider X to be a Banach space.

Definition 1.1. A family of bounded operators Pt : X → X, t ≥ 0 is a strongly continuous
semi group if

a) P0 = I.
b) For any s, t ≥ 0 we have that Ps+t = PsPt.
c) For any f ∈ X, limt→0,t>0 ‖Ptf − f‖ = 0.

Note that t→ Ptf is continous for all t ≥ 0, since

lim
ε→0
‖Pt+εf − Ptf‖ = lim

ε→0
‖PεPtf − Ptf‖ = 0 .

Such semi groups are natural in the context of linear evolution equations. An important
sub-class are the contraction semi-groups.

Definition 1.2. A family of bounded operators Pt : X → X, t ≥ 0 is a contraction semi-
group if is a strongly continuous semi-group and for all t ≥ 0

‖Pt‖ ≤ 1 .

One would like to think of a semi group as an operator of the form eAt for some operator
which one would call the generator of the semi-group. Let Pt be a contraction semi-group.
Consider the set

D(A) = {f ∈ X : lim
t→0

Ptf − f
t

exists} .

On D(A) define

Af = lim
t→0

Ptf − f
t

.

Note that apriori D(A) might consist only of the zero vector. We have, however, the
following theorem.

Theorem 1.3. The set D(A) is dense in X and the operator A defined above is a linear closed
operator. Further, if f ∈ D(A), so is Ptf for all t ≥ 0 and PtAf = APtf .

Proof. Consider

Vtf =
1

t

∫ t

0

Psfds

which exists as a Riemann integral, since the function s→ Psf is continous. Vt is a bounded
operator since

‖Vtf‖ ≤
1

t

∫ t

0

‖Psf‖ds ≤ ‖f‖

since Pt is a contraction. By the definition of the Riemann integral we also have that

‖Vtf − f‖ ≤
1

t

∫ t

0

‖Psf − f‖ds

from which we see that
lim
t→0
‖Vtf − f‖ = 0 .

In other words, the set
∪t>0Vt(X)
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is dense in X. Notice that, because, Pt is bounded,

PsVt = VtPs . (1)

For t > 0 w also find that

PεVtf − Vtf =
1

t

∫ t

0

Pε+sfds−
1

t

∫ t

0

Psfds =
1

t

∫ t+ε

ε

Psfds−
1

t

∫ t

0

Psfds

=
1

t

∫ t+ε

0

Psfds−
1

t

∫ t

0

Psfds−
1

t

∫ ε

0

Psfds =
1

t

∫ ε

0

PsPtfds−
1

t

∫ ε

0

Psfds

so that
PεVtf − Vtf

ε
=

1

t
[VεPtf − Vεf ] (2)

which converges to Vtf − f as ε→ 0. Hence Vtf ∈ D(A) and

AVtf =
1

t
[Ptf − f ] .

This shows that D(A) ∈ X is dense. Likewise, from (2) using (1),

Vt
Pεf − f

ε
=

1

t
[Pt − I]Vεf

and for f ∈ D(A) we find that

VtAf =
1

t
[Pt − I]f (3)

and in particular,

AVtf = VtAf . (4)

To see that A is closed, let fn ∈ D(A) be such that fn → f and Afn → v. We have, using (3)

Vtv = lim
n→∞

VtAfn = lim
n→∞

1

t
[Pt − I]fn =

1

t
[Pt − I]f ,

since Vt is continuous. As t→ 0 the left side converges to V and hence the right side converges
to which shows that f ∈ D(A) and Af = v. Finally, for f ∈ D(A)

Ps
1

t
(Pt − I)f =

1

t
(Pt − I)Psf

and the left side converges and hence so does the right side. Thus, Psf ∈ D(A) and

PsAf = APsf .

�

We call A the infinitesimal generator of Pt.
Since Pt is a contraction, one can define the integral

Rλ(A)f :=

∫ ∞
0

e−λtPtfdt

for all f ∈ X and λ ∈ C with Reλ > 0 as a Riemann integral.
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Theorem 1.4. The operator Rλ(A) maps X into D(A) and obeys the bound

‖Rλ(A)‖ ≤ 1

Reλ
. (5)

Moreover, for all f ∈ X
(λI − A)Rλ(A)f = f (6)

and for all f ∈ D(A)
Rλ(A)(λI − A)f = f . (7)

Thus, the resolvent set of A contains the right half plane and Rλ(A) = (A− λI)−1.

Proof. For Reλ > 0 we find

‖Rλ(A)‖ ≤
∫ ∞
0

e−Reλt‖Ptf‖dt ≤
1

Reλ
‖f‖ .

Again we compute

[Pε−I]Rλ(A)f = eελ
∫ ∞
ε

e−λtPtfdt−
∫ ∞
0

e−λtPtfdt = (eελ−1)

∫ ∞
ε

e−λtPtfdt−
∫ ε

0

e−λtPtfdt

so that
Pε − I
ε

Rλ(A)f =
(eελ − 1)

ε

∫ ∞
ε

e−λtPtfdt−
1

ε

∫ ε

0

e−λtPtfdt .

As ε→ 0 we see that the right side converges and hence so does the left side and

ARλ(A)f = λRλ(A)f − f
which proves (6). To see (7) we assume that f ∈ D(A) and write

Rλ(A)[Pε−I]f = eελ
∫ ∞
ε

e−λtPtfdt−
∫ ∞
0

e−λtPtfdt = (eελ−1)

∫ ∞
ε

e−λtPtfdt−
∫ ε

0

e−λtPtfdt

so that upon dividing by ε and taking the limit as ε→ 0 we get that

Rλ(A)Af = λRλ(A)f − f
which proves (7). The last statement follows from (5). �

Remark 1.5. Note that we defined the resolvent to be (λI−A)−1 which differs from our usual
definition by a minus sign.

Lemma 1.6. Let A be a closed densely defined operator and assume that (0,∞) ⊂ ρ(A) and
that

‖(λI − A)−1‖ ≤ 1

λ
, λ > 0 .

Then
λ(λI − A)−1f → f

as λ→∞.

Proof. Let f ∈ D(A). Then

λ(λI − A)−1f − f = (λI − A)−1[λI − λI + A]f = (λI − A)−1Af

and therefore

‖λ(λI − A)−1f − f‖ ≤ 1

λ
‖Af‖ ,
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which tends to 0 as λ→∞. If f ∈ X for any ε > 0 we can find g ∈ D(A) so that ‖f −g‖ < ε.
Now

λ(λI − A)−1f − f = λ(λI − A)−1(f − g)− (f − g) + λ(λI − A)−1g − g .
The term

λ(λI − A)−1(f − g)− (f − g)

can be estimated

‖λ(λI − A)−1(f − g)− (f − g)‖ ≤ ‖λ(λI − A)−1(f − g)‖+ ‖f − g‖ ≤ 2‖f − g‖ = 2ε

and the second term tends to zero as λ→∞ which proves the lemma. �

Lemma 1.7. With the same assumptions as in the previous lemma the operator

λ(λI − A)−1A

is bounded and for any f ∈ D(A)

‖λ(λI − A)−1Af − Af‖ → 0

as λ→∞.

Proof.
λ(λI − A)−1A = λ(λI − A)−1(A− λI) + λ2(λI − A)−1

= λ2(λI − A)−1 − λ
and therefore for any f ∈ D(A)

‖λ(λI − A)−1Af‖ = ‖λ2(λI − A)−1f − λf‖ ≤ 2λ‖f‖ .
Since D(A) is dense, this proves that λ(λI −A)−1A is bounded. The other statement follows
from the previous lemma. �

The idea is now to replace the operator A by the operator

Aλ := λ(λI − A)−1A

which is bounded. The semigroup
eAλt

is now simply defined by the power series, which is norm convergent.

Lemma 1.8. The operator

eAλt :=
∞∑
k=0

(Aλt)
k

k!

is norm convergent and is a contraction semi group.

Proof. That it is norm convergent and a semi group is standard and the proof is left to the
reader. Now,

‖eAλt‖ = ‖et(λ2(λI−A)−1−λ)‖ ≤ e−λt
∞∑
k=0

tk

k!
‖λ2(λI − A)−1‖ ≤ e−λt

∞∑
k=0

tkλk

k!
= 1

since
‖λ2(λI − A)−1‖ ≤ λ .

�
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Theorem 1.9 (Hille-Yoshida). A closed operator A is the generator of a contraction semi
group if and only if

(0,∞) ⊂ ρ(A)

and

‖Rλ(A)‖ ≤ 1

λ
, λ > 0 .

Proof. We have to show that
lim
λ→∞

eAλt

exists and defines a contraction semi group with infinitesimal generator A. Fix λ > 0 and
µ > 0 and write

eAλt − eAµt = eAµt+(Aλ−Aµ)s|t0 =

∫ t

0

d

ds
eAµt+(Aλ−Aµ)sds

which equals ∫ t

0

eAµ(t−s)(Aλ − Aµ)eAλsds =

∫ t

0

eAµ(t−s)eAλs(Aλ − Aµ)ds

where we have used that AλAµ = AµAλ and that

eAµt+(Aλ−Aµ)s = eAµte(Aλ−Aµ)s .

Now for f ∈ X

‖[eAλt − eAµt]f‖ ≤
∫ t

0

‖eAµ(t−s)eAλs(Aλ − Aµ)f‖ds

so that
‖[eAλt − eAµt]f‖ ≤ t‖(Aλ − Aµ)f‖ . (8)

If f ∈ D(A) then
‖Aλf − Af‖ → 0

as λ → ∞ and hence eAλtf is a Cauchy sequence and hence converges. Since D(A) is dense,
by standard arguments, eAλtf converges to Ptf for all f ∈ X and the linear operator Pt is a
contraction. We have to show that it is a semi group.

Pt+sf = lim
λ→∞

eAλ(t+s)f = lim
λ→∞

eAλteAλsf

= lim
λ→∞

eAλt[eAλs − Ps]f + lim
λ→∞

eAλtPsf

Now note that
‖eAλt[eAλs − Ps]f‖ ≤ ‖[eAλs − Ps]f‖

which tends to zero as λ→∞ and

lim
λ→∞

eAλtPsf = PtPsf .

Since
‖[Pt − I]f‖ ≤ 2‖f‖

it suffices to show that
lim
t→0
‖[Pt − I]f‖ = 0

for a dense set of vectors f . Pick f ∈ D(A). Then by (8) we have that

‖[Pt − eAµt]f‖ ≤ t‖(A− Aµ)f‖ (9)
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and hence

‖[Pt − I]f‖ ≤ ‖[Pt − eAµt]f‖+ ‖[eAµt − I]f‖ ≤ t‖(A− Aµ)f‖+ ‖[eAµt − I]f‖ → 0

as t → 0. Thus, we have shown that Pt is a contraction semi group and therefore it has
a generator B. We have shown that necessarily ρ(B) contains the complex numbers with
positive real part and, moreover,

‖(λI −B)−1‖ ≤ 1

Reλ
.

For f ∈ X we find

eAλtf − f =

∫ t

0

eAλsAλfds

and find that for f ∈ D(A)

Ptf − f =

∫ t

0

PsAfds .

From this we find that for f ∈ D(A)

lim
t→0

[Pt − I]f

t
= Af

and hence A ⊂ B. But for arbitrary g ∈ X
(λI −B)(λI − A)−1g = (λI − A)(λI − A)−1g = g

and hence
(λI −B)(λI − A)−1 = I

so
(λI − A)−1 = (λI −B)−1

and therefore D(B) = D(A). �


