
1. Basic theorem on self adjointness

The following theorem is basic to the theory of self adjoint operators. It clarifies the role
played by the adjoint of a symmetric operator.

Theorem 1.1. Let A be a symmetric operator on a Hilbert space H, i.e., A is densely defined
and for all f, g ∈ D(A)

〈Af, g〉 = 〈f, Ag〉 .
Then the following three statements are equivalent, i.e., each of them implies the other two.

a) A is self adjoint,
b) A is closed and Ker(A∗ ± iI) = {0},
c) Ran(A± iI) = H.

Proof. We assume that A = A∗ and prove b). Since A∗ is closed so is A. Since a self adjoint
operator has only realy eigenvalues, Ker(A∗ ± iI) = {0}. Next we assume b) and prove c).
The range of (A+ iI) is dense, for if f ⊥ Ran(A+ iI) then

〈(A+ iI)g, f〉 = 0

for all g ∈ D(A) and hence

〈Ag, f〉 = −i〈g, f〉 .
This implies that f ∈ D(A∗) and therefore

0 = 〈g, (A∗ − iI)f〉

for all g ∈ D(A). Since D(A) is dense, it follows that f ∈ Ker(A∗− iI) and hence f = 0. The
argument is the same for Ran(A − iI). Next we show that Ran(A ± iI) is closed. For any
f ∈ D(A) we have

‖(A+ iI)f‖2 = ‖Af‖2 + ‖f‖2

since A is symmetric. Thus,

‖(A+ iI)f‖2 ≥ ‖f‖2 . (1)

If gn ∈ Ran(A + iI) is a sequence that converges to g in H then gn = (A + iI)fn for some
fn ∈ D(A). The inequality (1) now implies that fn is a Cauchy sequence and hence converges
to some element f . Since A is closed we must have that f ∈ D(A) and (A+iI)f = g and hence
g ∈ Ran(A + iI). Thus we conclude that Ran(A + iI) = H. The proof for Ran(A− iI) = H
is the same. Next, we prove that c) implies a). Since A is symmetric, A ⊂ A∗. It remains to
show that D(A∗) ⊂ D(A). Let g ∈ D(A∗). Since Ran(A + iI) = H there exists h ∈ D(A)
with

(A∗ + iI)g = (A+ iI)h

or

A∗(g − h) = −i(g − h)

since h ∈ D(A∗). Thus, g − h ∈ Ker(A∗ + iI). Since Ran(A − iI) = H, Ker(A∗ + iI) = {0}
and hence g = h. Just note that for f ∈ Ker(A∗ + iI) we have for all g ∈ D(A)

0 = 〈g, (A∗ + iI)f〉 = 〈(A− iI)g, f〉

which implies that f = 0 since Ran(A− iI) = H . �
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At first sight it is hard to imagine that the adjoint of a symmetric operator can have an
imaginary eigenvalue. Here is an example due to von Neumann. Consider the operator

A =
1

i

d

dx
x3 + x3

1

i

d

dx

on the domain D(A) = C∞c (R). To be precise for f ∈ D(A)

Af(x) =
1

i

d

dx
(x3f)(x) +

1

i
x3f ′(x)

The operator A is symmetric. This is a simple exercise. Consider now the equation

1

i

d

dx
(x3f) + x3

1

i

df

dx
= if .

Note that f in this equation is not in D(A). So the computation is a formal one. This equation
is the same as

3x2f(x) + 2x3f ′(x) = −f(x) ,

a first order linear equation which can be solved explicitly.

f ′(x) = −(
3

2x
+

1

2x3
)f(x)

or

f(x) = const.|x|−3/2e−
1

4x2 .

If we set f(0) = 0 for x = 0, the function is everywhere defined and differentiable, in fact
infinitely often differentiable. The function f is in L2(R) and hence f ∈ D(A∗). So we have
found f 6= 0, f ∈ L2(R) such that

A∗f = if .

Recall that

〈Ag, g〉 = 〈g, Ag〉
for all g ∈ D(A). To understand this a bit better for the case at hand, consider∫ R

−R

[
1

i

d

dx
(x3f) + x3

1

i

df

dx

]
fdx

which, using integration by parts, equals

2
1

i
x3|f(x)|2

∣∣∣R
−R

+

∫ R

−R
f

[
1

i

d

dx
(x3f) + x3

1

i

df

dx

]
dx .

Here R is positive. For our function f we see that

2
1

i
x3|f(x)|2

∣∣∣R
−R

= const.24
1

i
e−

1
2R2

which does not converge to zero as R→∞.

Definition 1.2. A one parameter unitary group t→ Ut is defined by the following properties:
For each t ∈ R, Ut is a unitary operator, i.e., isometric and invertible. Moreover,

U0 = I and Ut+s = UtUs for all t, s ∈ R .

For f ∈ H
lim
t→0
‖Utf − f‖ = 0 .
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Note that

U−1t = U∗t = U−t .

Theorem 1.3. A closed, densely defined operator B is the generator of a unitary group if and
only if B = iA, where A = A∗, i.e., A is self adjoint.

Proof. Given a one parameter unitary group Ut we define the generator B as we did for semi
groups. We know that B is closed and densely defined. The only property to show is self
adjointness, or more properly skew adjointness of B. Let f ∈ D(B). Then for all v ∈ D(B)
we have that

(f,Bv) = lim
t→0

(f,
1

t
(Ut − I)v) = lim

t→0
(
1

t
(U−t − I)f, v)

and

lim
t→0

(
1

t
(U−t − I)f = lim

t→0
(
1

t
U−t(I − Ut)f = −Bf

since Ut is continuous. Hence for f ∈ D(B) we have for all v ∈ D(B)

(f,Bv) = (−Bf, v)

and hence B is skew symmetric, i.e., B = iA where A is symmetric, A ⊂ A∗. As in the proof
of the Hille-Yoshida theorem we define

Rλ(±iA)f =

∫ ∞
0

e−λtU±tfdt ,<λ > 0

which exists as a Riemann integral and find that

(λI ± iA)Rλ(±iA) = I

and

Rλ(±iA)(λI ± iA)f = f

for all f ∈ D(B). In particular Ran(λI ± iA) = H. Hence A is self adjoint. Conversely, we
assume that A = A∗. Consider first the operator B = iA. Because A is self adjoint we know
that

Ran(λI −B) = Ran(−iλI − A) = H
for all λ ∈ R, λ 6= 0. Moreover, for all f ∈ D(B),

‖(λI −B)f‖2 = ‖(−iλ− A)f‖2 = λ2‖f‖2 + ‖Af‖2

and hence the resolvent (λI −B)−1 exists on H with the bound

‖(λI −B)−1‖ ≤ 1

λ

for λ > 0. The B is the generator of a contraction semigroup, which we denote by Vt. For
f ∈ D(B) we compute noting that Vtf ∈ D(B),

d

dt
‖Vtf‖2 = (BVtf, Vtf)+(Vtf,Bvtf) = (iAVtf, Vtf)+(Vtf, iAvtf) = (Vtf, [−iA+iA]Vtf) = 0

since A is self adjoint. Hence Vt is an isometry. We may apply the same reasoning to the
operator −B and obtain an isometric semi group Wt. Next for f ∈ D(B) = D(−B) we
compute

d

dt
WtVtf = Wt(−B)Vtf +WtBVtf = 0
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and thus WtVt = I. Note that we have that Wtf ∈ D(B) as well as Vtf ∈ D(B). The same
reasoning shows that VtWt = I. Hence Vt is a unitary group where we set V−t = Wt.

�


