1. BASIC THEOREM ON SELF ADJOINTNESS

The following theorem is basic to the theory of self adjoint operators. It clarifies the role
played by the adjoint of a symmetric operator.

Theorem 1.1. Let A be a symmetric operator on a Hilbert space H, i.e., A is densely defined
and for all f,g € D(A)

(Af,9) = (f, Ag) -
Then the following three statements are equivalent, i.e., each of them implies the other two.
a) A is self adjoint,
b) A is closed and Ker(A* +il) = {0},
¢) Ran(A +il) = H.
Proof. We assume that A = A* and prove b). Since A* is closed so is A. Since a self adjoint

operator has only realy eigenvalues, Ker(A* +i/) = {0}. Next we assume b) and prove c).
The range of (A + /) is dense, for if f L Ran(A + iI) then

(A+il)g, f) =0
for all g € D(A) and hence

(Ag, f) = —ilg, [) -
This implies that f € D(A*) and therefore

0= (g, (A" —il)[)

for all g € D(A). Since D(A) is dense, it follows that f € Ker(A* —il) and hence f = 0. The
argument is the same for Ran(A — il). Next we show that Ran(A + iI) is closed. For any
f € D(A) we have

1A+ fI* = I AFIP + 111

since A is symmetric. Thus,

A+ D) fII* = (£ - (1)
If g, € Ran(A +il) is a sequence that converges to g in H then g, = (A + iI)f, for some
fn € D(A). The inequality (1) now implies that f,, is a Cauchy sequence and hence converges
to some element f. Since A is closed we must have that f € D(A) and (A+il)f = g and hence
g € Ran(A + iI). Thus we conclude that Ran(A +il) = H. The proof for Ran(A —il) = H
is the same. Next, we prove that ¢) implies a). Since A is symmetric, A C A*. It remains to
show that D(A*) C D(A). Let g € D(A*). Since Ran(A + il) = H there exists h € D(A)
with

(A*+il)g = (A+il)h
or

A™(g—h) = —i(g —h)
since h € D(A*). Thus, g — h € Ker(A* + iI). Since Ran(A —iI) = H, Ker(A* +il) = {0}
and hence g = h. Just note that for f € Ker(A* +4I) we have for all g € D(A)

which implies that f = 0 since Ran(A —il) = H . O
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At first sight it is hard to imagine that the adjoint of a symmetric operator can have an
imaginary eigenvalue. Here is an example due to von Neumann. Consider the operator

1d 31 d
A==
{ dxm M i dx
on the domain D(A) = C°(R). To be precise for f € D(A)

Af() = 3 L@ 1)a) + 30 ()

The operator A is symmetric. This is a simple exercise. Consider now the equation

1d(f) ldf _if

Note that f in this equation is not in D(A). So the computatlon is a formal one. This equation
is the same as

322 f(2) + 2% f'(2) = — f (),
a first order linear equation which can be solved explicitly.

@) = —(2 4 2 p@)

2¢  2x3
or

flx) = COHSt.|ZE|_3/2€_4w%
If we set f(0) = 0 for x = 0, the function is everywhere defined and differentiable, in fact
infinitely often differentiable. The function f is in L?(R) and hence f € D(A*). So we have
found f # 0, f € L*(R) such that

A f =if .
Recall that
(49, 9) = {9, Ag)
for all g € D(A). To understand this a bit better for the case at hand, consider

Bria, , 1f
/_RWW” }fd

which, using integration by parts, equals

R B T1d 1df
_R+/ f{z () + dx}x'

-R

2% ()

Here R is positive. For our function f we see that
1 R 1
2‘-1‘3|f(95)|2‘ = Const.24—.e_ﬁ
7 —R 7

which does not converge to zero as R — oo.

Definition 1.2. A one parameter unitary group t — Uy is defined by the following properties:
For each t € R, U, is a unitary operator, i.e., isometric and invertible. Moreover,

Uy=1and Uy, s =UUg for all t,s e R .

For feH
lim [0,/ — f]| =0
t—0



Note that
Ull=Ur=0U,.

Theorem 1.3. A closed, densely defined operator B is the generator of a unitary group if and
only if B =1A, where A = A*, i.e., A is self adjoint.

Proof. Given a one parameter unitary group U; we define the generator B as we did for semi
groups. We know that B is closed and densely defined. The only property to show is self
adjointness, or more properly skew adjointness of B. Let f € D(B). Then for all v € D(B)
we have that

(F, Bo) = lin(f, +(Us ~ I)o) = lim(- (U~ D))
and
lin(+ (U~ 1)f = lm(SU (T~ U)f = ~Bf
since Uy is continuous. Hence for f € D(B) we have for all v € D(B)
(f, Bv) = (=B/f,v)

and hence B is skew symmetric, i.e., B = iA where A is symmetric, A C A*. As in the proof
of the Hille-Yoshida theorem we define

R)\(:l:ZA>f = / 67)\tUitfdt S RA >0
0

which exists as a Riemann integral and find that

(M +iA)R\(£iA) =1
and

Ry(HiA) N £iA)f = f
for all f € D(B). In particular Ran(A £ iA) = H. Hence A is self adjoint. Conversely, we
assume that A = A*. Consider first the operator B = ¢A. Because A is self adjoint we know
that

Ran(Al — B) = Ran(—iA] — A) =H
for all A € R, A # 0. Moreover, for all f € D(B),
1AL = B)fII* = [I(=iXx — A)FII* = N[ 11" + [|Af]®

and hence the resolvent (Al — B)~! exists on H with the bound
1
M—-B) <<
|7 - B) < 5

for A > 0. The B is the generator of a contraction semigroup, which we denote by V;. For
f € D(B) we compute noting that V;f € D(B),

llv;f||2 (BVif,Vif )+ (Vif, Buef) = (1AVf, Vi f )+ (Vif, iAve f) = (Vif, [-iA+iA]Vif) = 0

since A is self adjoint. Hence V, is an isometry. We may apply the same reasoning to the
operator —B and obtain an isometric semi group W;. Next for f € D(B) = D(—B) we
compute

d
S Wif = W(=B)Vof + WBV:f =0



4

and thus W,V = I. Note that we have that W, f € D(B) as well as V;f € D(B). The same
reasoning shows that V;WW, = I. Hence V; is a unitary group where we set V_, = W,.
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