
1. The Laplace operator as a self adjoint operator

For f ∈ S(Rd) we define, as usual,

∆f(x) =
d∑
j=1

∂2f

∂x2j
(x) .

Thus we can consider ∆ as a linear operator with D(∆) = S(Rd). It is easy to see that for
any f, g ∈ S(Rd)

〈∆f, g〉 = 〈f,∆g〉 ,
and since S(Rd) is dense in L2(Rd) we see that ∆ with domain D(∆) is a symmetric operator.
The operator ∆ is not closed. This is easy to see. E.g., take any function f ∈ C2(Rd) which
decays including its derivatives faster than any inverse polynomial at infinity. It is not hard
to construct a sequence of functions fn ∈ S(Rd) so that fn → f and ∆fn → ∆f in L2(Rd).
The goal of this note is to find a self adjoint extension of ∆.

Using the Fourier Transform we find that

|2πk|2f̂(k) =

∫
Rd

e−2πik·x(−∆f)(x)dx

so that

−∆f(x) = F−1|2πk|2Ff = F∗|2πk|2Ff (1)

We use this formula to find a self adjoint extension of ∆ or rather −∆.

Lemma 1.1. On

D(A) := {f̂ ∈ L2(Rd) :

∫
Rd

|2πk|4|f̂(k)|2dk <∞}

define the operator

Af̂(k) := |2πk|2f̂(k) .

Then A is self adjoint.

Proof. Clearly, A is symmetric. Pick any f̂ ∈ D(A∗). Then for all g ∈ D(A) we have that

|〈f̂ , Aĝ〉| ≤ C‖ĝ‖2 ,

where the constant C depends only on f̂ . Pick

ĝ(k) = |2πk|2f̂(k)χ|k|<Rχ{k:|f̂(k)|<R}

where χA(k) denotes the characteristic function of the set A, i.e., χA(k) = 1 if k ∈ A and
χA(k) = 0 if k /∈ A. Note that this function is in D(A). Now

|〈f̂ , Aĝ〉| =
∫
{|k|<R}∩{k:|f̂(k)|<R}

|f̂(k)|2|2πk|4dk ≤ C

[∫
{|k|<R}∩{k:|f̂(k)|<R}

|f̂(k)|2|2πk|4dk
]1/2

so that ∫
{|k|<R}∩{k:|f̂(k)|<R}

|f̂(k)|2|2πk|4dk ≤ C2 .

Letting R → ∞ and using the monotone convergence theorem we find that f̂ ∈ D(A) and
hence A is self adjoint. �
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Corollary 1.2. The operator
H0 := F∗|2πk|2F (2)

on the domain D(H0) which consists of all functions f ∈ L2(Rd) whose Fourier Transform

f̂(k) satisfies ∫
Rd

|2πk|4|f̂(k)|2dk <∞

is selfadjoint. Moreover, H0 is an extension of −∆ on

Proof. H0 is unitarily equivalent to A and hence self adjoint. For f ∈ S(Rd) we have that

H0f = F∗|2πk|2Ff = −∆f

using (1) and hence H0 is an extension of −∆. �

Note that D(H0) is not really accessible. It is difficult to decide whether any given function
is in D(H0) or not. So, while it is very important to know that H0 is self adjoint, for compu-
tational purposes, H0 is useless. One might argue that H0 is an extension of −∆ defined on
S(Rd) and on this space one can inded compute. The problem, however, is that there might
be other self adjoint extensions of −∆ on S(Rd). Which one should one choose? We shall
show that −∆ on S(Rd) specifies the self adjoint extension uniquely, i.e, there are no others.
This is the source of the following definition.

Definition 1.3. An operator A with domain D(A) is essentially self adjoint if the closure
A is self adjoint. In this case we call D(A) a core of A.

Here is a simple of what can go wrong. Consider the Hilbert space L2(0, 1) and consider
the operator

Af(x) =
1

i

df

dx
(x)

with domain C∞c (0, 1), i.e., all infinitely differentiable functions that have compact support in
the interval (0, 1). It is easy to see that A is symmetric. One can also compute A, the closure
of the operator A. Its domain is the set

{f absolutely continuous on (0, 1) , f(0) = f(1) = 0} .
Take any smooth function g with g(1), g(0) not necessarily equals to zero and compute

〈Af, g〉 = 〈f, 1

i

dg

dx
〉 .

There are no boundary terms since f(0) = f(1) = 0 Thus, clearly ,A is not self adjoint.
We shall see later that the operator A has infinitely many self adjoint extensions, depending
on the boundary conditions one imposes. Boundary conditions are an important part of
the physical description of a process. E.g., if and considers the heat equation on a bounded
domain, one can fix the temparature on the boundary to be zero or one could choose insulating
boundary conditions, which means the the normal derivative of the temperature function
vanishes on the boundary.

We shall now prove that −∆ on S(Rd) is essentially self adjoint, in fact we shall show more.

Theorem 1.4. Define
Bf(x) = −∆f(x)

with
D(B) = C∞c (Rd) .
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Then B is essentially self adjoint, in fact B = H0.

Proof. For any given f ∈ D(H0) we have to produce a sequence of functions fn ∈ C∞c (Rd)
such that fn → f and −∆fn → H0f .

Let φ ∈ C∞c (B(0, 1)) where B(0, 1) is the unit ball centered at the origin. Assume that
φ ≥ 0,

∫
Rd φ(x)dx = 1. Such functions do exists, e.g., set

φ(x) = const.e
− 1

1−|x|2 if x 6= 0

and set φ(x) = 0 for all x with |x| > 1. It is a standard exercise to see that φ ∈ C∞c (B(0, 1))
and the constant in front of the function can be adjusted so that the function integrates to
one.

Now, consider

φδ(x) = δ−dφ(
x

δ
)

which is now a smooth function with support in the ball B(0, δ) and whose integral over the
whole space is again one. Now pick any f ∈ D(H0) and consider

fδ(x) =

∫
Rd

φδ(x− y)f(y)dy .

It is very easy to see that fδ is C∞(Rd) and that

−∆fδ(x) = −
∫
Rd

∆φδ(x− y)f(y)dy .

Since for every fixed x the function φδ ∈ D(H0) we can rewrite the above expression as

−∆fδ(x) = −〈H0φδ(x− ·), f〉 ,

and since f ∈ D(H0) and H0 is symmetric this equals

−〈φδ(x− ·), H0f〉 = −(H0f)δ .

It is a general fact from real analysis that for any g ∈ L2(Rd)

lim
δ→0
‖gδ − g‖ = 0 .

Once more, this fact is closely related to the outer regularity of Lebesgue measure.
Another useful fact is the inequality

‖gδ‖ ≤ ‖g‖ . (3)

This fact follows essentially from an integral version of the triangle inequality, which is called
Minkowski’s inequality, i.e.,[∫

Rd

|
∫
Rd

φδ(x− y)g(y)dy|2dx
]1/2

=

[∫
Rd

|
∫
Rd

φδ(y)g(x− y)dy|2dx
]1/2

≤
∫
φδ(y)

[∫
Rd

|g((x− y)|2dx
]1/2

dy ,

and since ∫
Rd

|g((x− y)|2dx =

∫
Rd

|g((x)|2dx



4

we find the bound ∫
φδ(y)dy

[∫
Rd

|g((x)|2dx
]1/2

= ‖g‖

With these facts at our disposal we can now advance our argument, namely

‖fδ − f‖ → 0 , ‖H0f − (−∆fδ)‖ → 0

as δ → 0. The sequence of functions fδ is in C∞(Rd) ∩ L2(Rd) and does not have compact
support, so we are not quite there yet.

Pick any function w ∈ C∞c (Rd) such that w(x) = 1 on the unit ball B(0, 1). For δ > 0 fixed
consider the sequence

fn,δ(x) = w(
x

n
)fδ(x) .

Clearly, for any fixed δ, n this function is in C∞c (Rd). Using the monotone convergence theo-
rem,

lim
n→∞

‖fδ − fn,δ‖2 = lim
n→∞

∫
Rd

|(1− w(
x

n
)|2|fδ(x)|2dx ≤ lim

n→∞

∫
|x|>n
|fδ(x)|2dx = 0 .

Next we compute

∆fn,δ(x) =
1

n2
(∆w)(

x

n
)fδ(x) + 2

1

n
(∇w)(

x

n
) · ∇fδ(x) + w(

x

n
)∆fδ(x) ,

so that

‖∆fn,δ −∆fδ‖ ≤
1

n2
‖(∆w)(

·
n

)fδ‖+ 2
1

n
‖(∇w)(

·
n

) · ∇fδ‖+ ‖(1− w(
x

n
))∆fδ‖ .

Since w including its derivatives is bounded we find

‖∆fn,δ −∆fδ‖ ≤ C
1

n2
‖fδ‖+ 2C

1

n
‖∇fδ‖+ ‖(1− w(

x

n
))∆fδ‖

where C is some constant independent of n, δ. Since

lim
n→∞

‖(1− w(
x

n
))∆fδ‖ = 0

we have that
lim
n→∞

‖∆fn,δ −∆fδ‖ = 0 .

Pick any ε > 0. There exists δ > 0 so that[
‖f − fδ‖2 + ‖H0f − (−∆fδ‖2

]1/2
<
ε

2
Next for this particular value of δ pick n so that[

‖fδ − fn,δ‖2 + ‖∆fδ −∆fn,δ‖
]1/2

<
ε

2
and hence [

‖f − fn,δ‖2 + ‖H0f − (−∆fn,δ‖2
]1/2

< ε

which is precisely what we wanted to show. �


