
1. Extensions of symmetric operators
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In what follows H is a complex Hilbert space.
Recall that an operator A : D(A) → H is symmetric if D(A) is dense in H and for all

f, g ∈ D(A)

(f, Ag) = (Af, g) .

Since A ⊂ A∗ it follows that a symmetric operator is closable and we shall henceforth assume
that A is a closed symmetric operator. Note that this assumption entails that the spaces
Ran(A+ iI) and Ran(A− iI) are subspaces of H, i.e., closed linear manifolds.

We define the Cayley transform of A,

V : Ran(A+ iI)→ Ran(A− iI)

which is defined as follows. For g ∈ Ran(A+ iI) there exists a unique f ∈ D(A) with

g = (A+ iI)f .

Define

V g = (A− iI)f .

The operator V satisfies ‖V g‖ = ‖g‖ and V is onto. We call such operators isometries. The
point of the next theorem is that the study of symmetric operators can be reduced to the
study of isometries.

Theorem 1.1. (One to one correspondence between symmetric operators and
isometries) Let A be a closed symmetric operator and V its Cayley transform. Then Ran(I−
V ) is dense in H. Conversely let F and G be two subspaces of a Hilbert space and assume
that V : F → G is an isometry such that Ran(I − V ) is dense in H. Then V is the Cayley
transform of a closed symmetric operator.

Proof. For any g ∈ Ran(A+ iI) there exists a unique f ∈ D(A) such that g = (A+ iI)f and
V g = (A− iI)g. Hence

f =
1

2i
(g − V g) and Af =

1

2
(g + V g) ,

D(A) = Ran(
1

2i
(I − V )

and since D(A) is dense in H the first statement follows. To see the converse define D(A) =
Ran(I − V ). I.e., for f ∈ D(A) there exists g ∈ F such that

f =
1

2i
(g − V g) .

By assumption this set is dense in H. In fact the vector g is unique. This is equivalent to the
statement that (I − V ) is injective. If there exists h ∈ F with V h = h then we have for all
f ∈ F

(h, (I − V )f) = (h, f)− (h, V f) = (h, f)− (V h, V f) = (h, f)− (h, f) = 0
1
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since V preserves the inner product. Since Ran(I − V ) is dense it follows that h = 0. Thus
for any f ∈ D(A) there exists a unique g ∈ F such that f = 1

2i
(g − V g). Next we define

Af =
1

2
(g + V g)

and note that for any f1, f2 ∈ D(A)

(f1, Af2) = − 1

4i
((g1 − V g1), (g2 + V g2)) = − 1

4i
[(g1, g2) + (g1, V g2)− (V g1, g2)− (g1, g2)] =

− 1

4i
[(g1, V g2)− (V g1, g2)] .

Likewise,

(Af1, f2) =
1

4i
((g1 + V g1), (g2 − V g2)) =

1

4i
[−(g1, V g2) + (V g1, g2)]

and hence A is symmetric. To see that A is closed let gn ∈ D(A) be a sequence converging to
g and Agn converging to h. Then the sequence

fn = (A+ iI)gn

converges to f := h + ig which, since F is closed, is also in F . Likewise, V fn = (A − iI)gn
converges to h − ig and since G is closed we have that h − ig ∈ G and V f = h − ig. Hence
we have that

g =
1

2i
(f − V f) and h =

1

2
(f + V f) ,

which means that g ∈ D(A) and h = Ag. �

A simple consequence is the

Corollary 1.2. The Cayley transform of a closed symmetric operator A is unitary. Con-
versely, a unitary operator V such that Ran(I − V ) is dense is the Cayley transform of a self
adjoint operator.

Proof. Suppose that A is self adjoint. Then by the basic theorem on self adjoint operators
Ran(A ± iI) = H. Thus the isometry V : H → H is onto, injective and hence unitary.
Conversely, suppose that V is unitary and Ran(I − V ) dense, in particular the space F = H.
Then the operator A is defined on Ran(I − V ) by

Af =
1

2
(g + V g)

where g is the unique solution of the equation

f =
1

2i
(g − V g) .

We note that
(A+ iI)f = g , (A− iI)f = V g

and since g can be chosen arbitrarily inH and since V is unitary, this shows that Ran(A±iI) =
H and hence A = A∗.

�

Our next theorem pushes this correspondence further by showing that extensions of sym-
metric operators correspond to extensions of isometries.
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Theorem 1.3. (Extensions of symmetric operators correspond to extensions of
isometries) The operator A′ is a closed symmetric extension of a closed symmetric operator
A if and only if for the corresponding Cayley transforms V ⊂ V ′.

Proof. Let A′ be a symmetric closed extension. Then Ran(A + iI) ⊂ Ran(A′ + iI) and
Ran(A− iI) ⊂ Ran(A′ − iI). For g ∈ Ran(A+ iI) there exists a unique f ∈ D(A) such that
g = (A+ iI)f and V g = (A− iI)f . Since A ⊂ A′, g = (A′+ iI)f and V ′g = (A′− iI)f = V g.
Hence V ⊂ V ′. Conversely if V ⊂ V ′ then for g ∈ D(A) we have g = 1

2i
(f − V f) for

a unique f ∈ Ran(A + iI). Since V ⊂ V ′ we have that Ran(A + iI) ⊂ Ran(A′ + iI) and
Ran(A−iI) ⊂ Ran(A′−iI). Finally, Ag = 1

2
(f+V f) = 1

2
(f+V ′f) = A′g. Hence A ⊂ A′. �

The next step in our program consists of understanding extensions of isometries.

Theorem 1.4. (Structure of isometric extensions) Let F,G be two subspaces of H and
V : F → G an isometry, i.e., ‖V f‖ = ‖f‖ for all f ∈ F and V is onto G. Let F+ ⊂ F⊥ and
F− ⊂ G⊥ be subspaces. Then

V ′ : F ⊕ F+ → G⊕ F−
is an isometric extension of V if and only if dimF+ = dimF− and there exists an isometry

Ṽ : F+ → F− so that for any f ∈ F ⊕ F+, i.e., f = f0 + f+, f0 ∈ F, f+ ∈ F+

V ′f = V f0 + Ṽ f− . (1)

Proof. Clearly V ′ of the form given above is an isometry. It is onto G⊕F− since V is onto G

and Ṽ is onto F−. It preserves length since

(V ′f, V ′f) = (V f0 + Ṽ f+, V f0 + Ṽ f+) = (V f0, V f0)+(V f0, Ṽ f+)+(Ṽ f+, V f0)+(Ṽ f+, Ṽ f+) .

Since V f0 ∈ G and Ṽ f+ ∈ F− they are perpendicular to each other and hence

(V ′f, V ′f) = (V f0 + Ṽ f+, V f0 + Ṽ f+) = (V f0, V f0) + (Ṽ f+, Ṽ f+)

= (f0, f0) + (f+, f+) = (f, f) .

Suppose that V ′ : F ⊕ F+ → G⊕ F− is an isometry that extends V . For any vector f+ ∈ F+

define

Ṽ f+ = V ′f+ ∈ G⊕ F− .
Pick any g ∈ G and note that since V is onto G there exists f ∈ F with g = V f . Hence

(g, Ṽ f+) = (V f, V ′f+) = (V ′f, V ′f+) = (f, f+) = 0

Since g ∈ G is arbitrary, Ṽ f+ ⊥ G and hence Ṽ maps F+ into F−. That Ṽ preserves the norm

follows from the fact that V ′ does. We have to show that Ṽ is onto. For any f− ∈ F− there
exists f ∈ F ⊕ F+ so that V ′f = f− because V ′ is onto. For any f0 ∈ F we have that

0 = (V f0, V
′f) = (V ′f0, V

′f) = (f0, f)

Hence f ∈ F+ and Ṽ f = f−. The formula (1) is obvious. �

With these results we can now completely characterize all closed symmetric extensions of a
closed symmetric operator.
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Theorem 1.5. (Closed symmetric extensions) Let A : D(A)→ H be a closed symmetric
operator. A closed symmetric operator A′ : D(A′)→ H is an extension of A if and only if the
following holds:

There exists subspaces F+ ⊂ Ker(A∗− iI) = Ran(A+ iI)⊥, F− ⊂ Ker(A∗+ iI) = Ran(A− iI)⊥

and an isometry Ṽ : F+ → F− so that the Cayley transform of A′, V ′ is of the form

V ′ : Ran(A+ iI)⊕ F+ → Ran(A− iI)⊕ F−
V ′f = V f0 + Ṽ f+ (2)

with f = f0 + f+.

In particular this entails that dimF+ = dimF−.

Proof. If A′ is a closed symmetric extension of A then we know that for their respective Cayley
transforms V ⊂ V ′ by Theorem 1.3. Since Ran(A ± iI) ⊂ Ran(A′ ± iI) we can define F±
to be the orthogonal complement of Ran(A ± iI) in Ran(A′ ± iI). The conclusion follows
from Theorem 1.4. Conversely, if V ′ is given by (2) then Ran(I − V ′) is dens in H because
Ran(I − V ) is and hence by Theorem refsymmetric isometries V ′ is the Cayley transform of
a closed symmetric operator and since V ⊂ V ′ we have that A′ extends A. �

Corollary 1.6. A closed symmetric operator has self-adjoint extensions if and only if the
deficiency indices

n± := dim Ker(A∗ ∓ iI)

are equal.

Proof. This follows from the fact that a closed symmetric operator is self-adjoint if and only
if its Cayley transform is unitary. �

A useful fact about deficiency indices is the following theorem.

Theorem 1.7. For any µ > 0 the function

n±(µ) := dim Ker(A∗ ∓ iµI)

is constant.

Proof. Consider two closed subspaces F,G ⊂ H and consider the orthogonal projections
PF , PG onto F resp. G. We claim that if the norm ‖PF − PG‖ < 1, then the the two
spaces have the same dimension. If the dimensions are both infinity, there is nothing to prove.
So suppose that

dimF > dimG .

There exists a non-zero vector f ∈ F with f ⊥ G. (Why?) Hence

(PF − PG)f = f

which contradicts the assumption that ‖PF − PG‖ < 1. Hence, dimF ≤ dimG. The result
follows by exchanging the roles of F and G. Consider the orthogonal projections P, P ′ that
project the Hilbert space onto Ker(A∗ − iµI) and Ker(A∗ − iµ′I). We note that for any
f ∈ D(A) we have that

‖(A+ iµI)f‖ ≥ |µ‖f‖ .
For any h ∈ H we have that

‖(I − P )h‖ = sup
f∈D(A)

|(h, (A+ iµI)f)|
‖(A+ iµI)f‖
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noting that the right side is the projection of h onto Ran(A+ iµ). Likewise,

‖(I − P ′)h‖ = sup
f∈D(A)

|(h, (A+ iµ′I)f)|
‖(A+ iµ′I)f‖

.

If h ∈ Ker(A∗ − iµI), then

‖(I − P ′)h‖ = sup
f∈D(A)

|(h, (A+ iµ′I)f)|
‖(A+ iµ′I)f‖

= sup
f∈D(A)

|((A∗ − iµ′I)h, f)|
‖(A+ iµ′I)f‖

= sup
f∈D(A)

|µ− µ′||(h, f)|
‖(A+ iµ′I)f‖

and the last term can is bounded by

|µ− µ′|
|µ′|

‖h‖ .

Thus, we have shown that for any h with Ph = h,

‖(P − P ′)h‖ = ‖(I − P ′)h‖ ≤ |µ− µ
′|

|µ′|
‖h‖ .

Thus if |µ−µ
′|

|µ′| < 1 we have that ‖P − P ′‖ < 1 and the dimensions are the same. �

So far this has been rather abstract. More useful are the following two theorems of von
Neumann. The first one is simple but instructive since it allows, in principle, to compute a
special extension of A, namely A∗.

Theorem 1.8. Let A : D(a)→ H be a closed symmetric operator. Then

D(A∗) = D(A) + Ker(A∗ − iI) + Ker(A∗ + iI)

where the sum is direct. Moreover, writing an arbitrary f ∈ D(A∗) as f = f0 + f+ + f− where
f0 ∈ D(A), f+ ∈ Ker(A− iI) and f− ∈ Ker(A+ iI) we have

A∗f = Af0 + if+ − if− .

Proof. Since A ⊂ A∗ we have that D(A) ⊂ D(A∗). The inclusions Ker(A− iI) ⊂ D(A∗) and
Ker(A∗ + iI) ⊂ D(A∗) are obvious. Hence

D(A) + Ker(A∗ − iI) + Ker(A∗ + iI) ⊂ D(A∗).

To see the converse, consider any f ∈ D(A∗). Since the subspaces Ran(A+ iI) and Ran(A+
iI)⊥ = Ker(A∗ − iI) are closed we can split the vector (A∗ + iI)f uniquely into u+ f+ where
u = Ran(A+ iI)f0 for some unique f0 ∈ D(A) and A∗f+ = if+ or (A∗+ iI)vf+ = 2if+. Thus,

(A∗ + iI)f = (A+ iI)f0 + (A∗ + iI)[
1

2i
f+ = (A∗ + iI)f0 + (A∗ + iI)[

1

2i
f+

since D(A) ⊂ D(A∗). Hence

(A∗ + iI)

[
f − f0 −

1

2i
f+

]
= 0 .

This means that f − f0 − 1
2i
f+ ∈ Ker(A∗ + iI) and hence

D(A∗) = D(A) + Ker(A∗ − iI) + Ker(A∗ + iI) .

To see that the sum is direct, assume that f0+f++f− = 0 where f0 ∈ D(A), f+ ∈ Ker(A∗−iI)
and f− ∈ Ker(A∗ + iI). Now

(A+ iI)f0 = (A∗ + iI)f0 = (A∗ + iI)f+ = 2if+
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This says that f+ ∈ Ker(A∗ − iI) ∩ Ran(A + iI) which are orthogonal complements. Hence
f+ = 0. In a similar fashion we see that f− = 0 and hence f0 = 0 and the sum is direct.
Finally, for f ∈ D(A∗), i.e., f = f0 + f+ + f− we compute

A∗f = Af0 + A∗f+ + A∗f− = Af0 + if+ − if− .

�

Now we extend this theorem to arbitrary closed symmetric extensions. This time, we will
make use of the Cayley transform.

Theorem 1.9. Let A be a closed symmetric operator. The operator A′ is a closed symmetric

extension of A if and only if there are subspaces F± ⊂ Ker(A∗ ∓ iI) and an isometry Ṽ :
F+ → F− such that

D(A′) = D(A) + (I − Ṽ )(F+) (3)

where the sum is direct and for any f ∈ D(A′) we have f = f0+g−Ṽ g for a unique f0 ∈ D(A)
and g ∈ H. Further,

A′(f0 + g − Ṽ g) = Af0 + ig + iṼ g . (4)

The operator A′ is self adjoint if and only if F± = Ker(A∗ ∓ iI) .

Proof. Using Theorem 1.4 it remains to show the displayed formulas. The domain of A′ is

given by Ran(I−V ′) = (I−V )(Ran(A+ iI) + Ran(I− Ṽ )(F+). Since (I−V )(Ran(A+ iI) =
D(A) the formula (3) is established. Since F± ⊂ Ker(A∗ ∓ iI) it follows from the proof
of the previous theorem that the sum is direct. Let f ∈ D(A′). There exists a unique
h ∈ Ran(A′ + iI) = Ran(A+ iI)⊕ F+ such that

f = (h− V ′h)

and A′ is then given by

A′f = i(h+ V ′h) .

Since h can be written as h0 + f+, h0 ∈ Ran(A+ iI), f+ ∈ F+ and V ′(h0 + f+) = V h0 + Ṽ f+
we have

f = (h0 − V h0) + (f+ − Ṽ f+) = f0 + (f+ − Ṽ f+)

and hence

A′(f0 + f+ − Ṽ f+) = Af0 + i(f+ + Ṽ f+) .

�

Example:
We apply now this theory to a concrete problem (taken from Reed -Simon, Modern methods

of mathematical physics, volume I). Consider the Hilbert space L(0, 1) of complex valued
square integrable functions. Consider the dense domain

D = {f ∈ L2(0, 1) : f ∈ AC[0, 1], f(0) = f(1) = 0} .

Here AC[0,1] is the space of absolute continuous functions whose derivative is square inte-
grable. On D consider the operator

Af =
1

i
f ′ .
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We have seen before that A is closed, symmetric but not self adjoint. We shall determine all
its self adjoint extensions. it was shown in previous lectures that the adjoint of A, A∗ is given
by

A∗f =
1

i
f ′

for f in the domain AC[01]. Note, there are no additional boundary conditions. That f+ ∈
Ker(A∗ − iI) means that 1

i
f ′+ = if+, i.e., f ′+ = −f+. Hence

f+(x) =

√
2√

e2 − 1
e−(x−1) .

Note that the pre-factor renders the function normalized in L2(0, 1). Likewise to find f− ∈
Ker(A∗ + iI) amounts to solving the equation f ′ = f and we get

f−(x) =

√
2√

e2 − 1
ex .

We have tacitly assumed that every function that is in AC[01] and satisfies the equation
A∗f = f must be a multiple of the exponential function. This is certainly true for a function
that is everywhere differentiable. Proof: Let f be any solution and write f = gex. Then
gex = f = f ′ = g′ex + gex and hence g′ = 0. We know from calculus that a function
that is differentiable and whose derivative vanishes everywhere must be a constant function.
The problem is that we know apriori only that the solution is in AC[01] and not necessarily
differentiable everywhere. One approach on how to deal with this problem is the following:
consider φε(x) = ε−1φ(x/ε) where φ(x) ∈ C∞c (−1, 1) and write fε(x) :=

∫ 1

0
φε(x − y)f(y)dy.

For all x ∈ (ε, 1− ε) we have that fε is infinitely differentiable and its derivative is given by

f ′ε(x) = A∗fε(x) =

∫ 1

0

φ′ε(x− y)f(y)dy = −(Aφ′ε(x− ·), f) = (φε(x− ·), A∗f)

noting that for ε < x < 1 − ε there are no boundary terms in the integration by parts. Since
A∗f = f we have that f ′ε(x) = fε(x) and hence fε(x) = cεe

x. Since f is continuous, we have
that limε→0 fε(x) = f(x) and hence f(x) = cex where c is a constant. Thus, there are no other
solutions and hence the operator A has deficiency indices (1, 1) and therefore has self-adjoint
extensions.

Now, we use Theorem 1.9. Any isometry Ṽ : Ker(A∗ − iI)→ Ker(A∗ + iI) is given by

Ṽβf+ = βf−

where β is a complex number of absolute value 1. Hence the domain of Aβ, the self-adjoint

extension corresponding to this isometry Ṽβ, is given by functions of the form

f0 + c(f+ − βf−) = f0 + c

√
2√

e2 − 1
(e−(x−1) − βex)

where f0 ∈ D and c is an arbitrary complex constant. Further,

Aβ(f0 + c(f+ − βf−)) = Af0 + ic(f+ + βf−) = Af0 + ic

√
2√

e2 − 1
(e−(x−1) + βex) .
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The domain D(Aβ) has another characterization. Any function of the form f := f0 +

c
√
2√

e2−1(e−(x−1) − βex) where f0 ∈ D satisfies

f(0) = c

√
2√

e2 − 1
(e− β) and f(1) = c

√
2√

e2 − 1
(1− βe) .

In other words

f(1) =
1− βe
e− β

f(0) .

Note that the constant

α :=
1− βe
e− β

is a complex constant of absolute value 1. Also note that

β =
αe− 1

α− e
.

Now let’s turn things around, and consider the operator Bαf = 1
i
f ′ on the domain

D(Bα) = {f ∈ L2(0, 1) : f ∈ AC[0, 1], f(1) = αf(0)} .
One expects that Aβ = Bα. To see this we have to show that the domains are equal. We have
seen that D(Aβ) ⊂ D(Bα). Now pick any f ∈ D(Bα) and consider the function

f0 := f + af+ + bf−

and try to adjust the constants a and b so that f0(0) = f0(1) = 0, i.e., f0 ∈ D. This amounts
to solve the equations

af+(0) + bf−(0) + f(0) = 0 and af+(1) + bf−(1) + f(1) = 0 .

We find [
a
b

]
= − 1

f+(0)f−(1)− f−(0)f+(1)

[
f−(1) −f−(0)
−f+(1) f+(0)

] [
f(0)
f(1)

]
= −f(0)

1

2

√
2√

e2 − 1

[
e− α
eα− 1

]
which leads to

af+ + bf− = −f(0)
e− α
e2 − 1

[e−(x−1) − αe− 1

α− e
ex] = c

√
2√

e2 − 1
[e−(x−1) − βex] .

This shows that D(Aβ) = D(Bα).
It is now very easy to compute the eigenvalues of Bβ. It amounts to solving the equation

1

i
f ′ = λf

with the condition f(1) = βf(0). The general solution is ceiλx and the boundary condition
requires

ceiλ = cβ

or
eiλ = β

(c 6= 0!) Write

β = eiφ
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where φ ∈ [0, 2π) and then find that the eigenvalues are given by

λk = φ+ 2πk , k = 0,±1,±2, . . . .

The corresponding eigenfunctions are

ei(φ+2πk)x .


