NAME:

PRACTICE TEST 1 FOR MATH 2551 F1-F4, SEPTEMBER 20, 2018

This test should be taken without any notes and calculators. Time: 50 minutes. Show your work, otherwise credit cannot be given.

Problem 1: Compute the volume of the parallelepiped spanned by the vectors $\langle 1, 2, 2 \rangle$, $\langle 2, 1, -2 \rangle$, $\langle 1, 1, 1 \rangle$

Problem 2: Find the distance between the point (1, 2, 3) and the plane

$$x + 2y + 3z = 6 .$$

Problem 3: Given the curve

$$\vec{r}(t) = \langle e^t, t, t^2 \rangle , t \in \mathbb{R} .$$

Find the line tangent to the curve at the point $\langle e, 1, 1 \rangle$, i.e., at t = 1.

Problem 4: A particle has the trajectory

$$\vec{r}(t) = \langle t^2/2, t, e^t \rangle$$

Find the tangential acceleration a_T , the normal acceleration a_N as well as \vec{T} , \vec{N} and \vec{B} .

Problem 5: Calculate the arc length of the curve $\vec{x}(t) = \langle t^2, t^3 \rangle$ where t ranges from 0 to 1.

Problem 6: A real valued function $f(\vec{x})$ on some domain $D \in \mathbb{R}^2$ satisfies the inequality

$$|f(\vec{x}) - f(\vec{x}_0)| \le 2\sqrt{|\vec{x} - \vec{x}_0|}$$

for all $\vec{x} \in D$ where \vec{x}_0 is some fixed point in D. For any given $\varepsilon > 0$ find $\delta > 0$ so that $|f(\vec{x}) - f(\vec{x}_0)| < \varepsilon$

whenever $|\vec{x} - \vec{x}_0| < \delta$.

Problem 7: Consider the function

$$f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

For $(x, y, z) \neq (0, 0, 0)$ compute f_x, f_y, f_z and $f_{xx} + f_{yy} + f_{zz}$.

Problem 8: Sketch the level curve of the function $\sqrt{x+y^2-3}$ that passes through the point (3, -1).