NAME:

PRACTICE TEST 1 FOR MATH 2551 F1-F4, SEPTEMBER 20, 2018

This test should be taken without any notes and calculators. Time: 50 minutes. Show your work, otherwise credit cannot be given.

Problem 1: Compute the volume of the parallelepiped spanned by the vectors

$$
\langle 1,2,2\rangle,\langle 2,1,-2\rangle,\langle 1,1,1\rangle
$$

Problem 2: Find the distance between the point $(1,2,3)$ and the plane

$$
x+2 y+3 z=6
$$

Problem 3: Given the curve

$$
\vec{r}(t)=\left\langle e^{t}, t, t^{2}\right\rangle, t \in \mathbb{R}
$$

Find the line tangent to the curve at the point $\langle e, 1,1\rangle$, i.e., at $t=1$.

Problem 4: A particle has the trajectory

$$
\vec{r}(t)=\left\langle t^{2} / 2, t, e^{t}\right\rangle
$$

Find the tangential acceleration a_{T}, the normal acceleration a_{N} as well as \vec{T}, \vec{N} and \vec{B}.

Problem 5: Calculate the arc length of the curve $\vec{x}(t)=\left\langle t^{2}, t^{3}\right\rangle$ where t ranges from 0 to 1 .

Problem 6: A real valued function $f(\vec{x})$ on some domain $D \in \mathbb{R}^{2}$ satisfies the inequality

$$
\left|f(\vec{x})-f\left(\vec{x}_{0}\right)\right| \leq 2 \sqrt{\left|\vec{x}-\vec{x}_{0}\right|}
$$

for all $\vec{x} \in D$ where \vec{x}_{0} is some fixed point in D. For any given $\varepsilon>0$ find $\delta>0$ so that

$$
\left|f(\vec{x})-f\left(\vec{x}_{0}\right)\right|<\varepsilon
$$

whenever $\left|\vec{x}-\vec{x}_{0}\right|<\delta$.

Problem 7: Consider the function

$$
f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} .
$$

For $(x, y, z) \neq(0,0,0)$ compute f_{x}, f_{y}, f_{z} and $f_{x x}+f_{y y}+f_{z z}$.

Problem 8: Sketch the level curve of of the function $\sqrt{x+y^{2}-3}$ that passes through the point $(3,-1)$.

