## PRACTICE FINAL EXAM

## 1. Curves

Problem 1: Find the parametric equations of the line that is tangent to the curve

$$
\vec{r}(t)=\left(e^{t}, \sin t, \ln (1-t)\right)
$$

at $t=0$.

Problem 2: Find the speed and the normal and tangential components of the acceleration and curvature for the curve $x(t)=\cos t, y(t)=\sin (t), z(t)=-t^{2}$.

## 2. Optimization problems

Problem 3: Find the minimum cost area of a rectangular solid with volume 64 cubic inches, given that the top and sides cost 4 cents per square inch and the bottom costs 7 cents per square inch. Just set up the equations using Lagrange multipliers, you do not have to solve them.

Problem 4: Find the plane of the form

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

where $a, b, c>0$ and that passes through the point $(2,1,4)$ and cuts off the smallest volume in the first octant.

## 3. Double and triple integrals

Problem 5: Find the $y$ moment of the first petal (mostly in the first quadrant) of the 3 -leaf rose $r=\cos (3 \theta)$. Just set up the integral (with limits) in polar coordinates. You do not have to evaluate it.

Problem 6: Compute the volume of the region that is bounded above by the plane $z=y$ and below by the paraboloid $z=x^{2}+y^{2}$.

## 4. Surface Integrals

Problem 7: Find the surface area of the parabolic cylinder $z=y^{2}$ that lies over the triangle with vertices $(0,0),(0,1),(1,1)$ in the $z y$ plane.

Problem 8: Consider the surface $x^{2}+y^{2}+(z-2)^{2}=4, z \geq 0$. Convert via Stokes' theorem the surface integral

$$
\int_{S} \int \operatorname{curl} F \cdot \vec{n} d \sigma
$$

to a line integral. Here $\vec{F}=x^{2} y \vec{i}-x y^{2} \vec{j}+\sin z \vec{k}$. Set this line integral up, parametrize the curve, and reduce to an ordinary Calculus One integral with limits. Don't evaluate this integral.

## 5. Line integrals and Stokes' Theorem

Problem 9: Compute the line integral of the vector field

$$
\vec{F}=\left(x y z+1, x^{2} z, x^{2} y\right) e^{x y z}
$$

along the curve given in parametrized form by

$$
\vec{r}(t)=(\cos t, \sin t, t), 0 \leq t \leq \pi .
$$

Problem 10: Compute the line integral $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ where $C$ is the curve given by the intersection of the sphere $x^{2}+y^{2}+z^{2}=4$ and the plane $z=-y$, counterclockwise when viewed from above, and

$$
\vec{F}=\left(x^{2}+y, x+y, 4 y^{2}-z\right) .
$$

## 6. Divergence Theorem

Problem 11: Use the divergence theorem to compute the outward flux of the vector field

$$
\vec{F}=\left(x^{2}, y^{2}, z^{2}\right)
$$

through the cylindrical can that is bounded on the side by the cylinder $x^{2}+y^{2}=4$, bounded above by $z=1$ and below by $z=0$.

Problem 12: Compute the flux of $\vec{F}=5 z y^{3} \vec{i}+x z \vec{j}+3 z \vec{k}$ through the surface $x^{2}+y^{2}+z^{2}=9$ using the divergence theorem.

