
PRACTICE FINAL EXAM

1. Curves

Problem 1: Find the parametric equations of the line that is tangent to the curve

~r(t) = (et, sin t, ln(1− t))

at t = 0.

~r(0) = (1, 0, 0) ,

~r′(t) = (et, cos t,− 1

(1− t)
) , ~r′(0) = (1, 1,−1)

and the equation of the line is

x(s) = 1 + s , y(s) = s , z(s) = −s .

Problem 2: Find the speed and the normal and tangential components of the acceleration
and curvature for the curve x(t) = cos t, y(t) = sin(t), z(t) = −t2.

Velocity:

~v(t) = 〈− sin t, cos t,−2t〉
Speed:

s′(t) =
√

1 + 4t2

Acceleration:

~a(t) = 〈− cos t,− sin t,−2〉
Tangential component:

aT = s′′(t) =
4t√

1 + 4t2

Normal component:

aN =
√
|~a|2 − a2T =

√
5 + 4t2√
1 + 4t2

Curvature:

aN = s′(t)2κ(t)

and hence

κ =
√

5 + 4t2
√

1 + 4t2
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2. Optimization problems

Problem 3: Find the minimum cost area of a rectangular solid with volume 64 cubic inches,
given that the top and sides cost 4 cents per square inch and the bottom costs 7 cents per
square inch. Just set up the equations using Lagrange multipliers, you do not have to solve
them.

The box has unknown dimensions x, y, z. The volume constraint is xyz = 64 and the area
is 2(xy + xz + yz). The cost is 8(xy + xz) + 11yz. We have minimize this cost given the
constraint.

Lagrange multiplier leads to

8(y + z) = λyz , 8x+ 11z = λxz , 8x+ 11y = λxy , xyz = 64 .

and we have to solve these equations for positive x, y, z.
(Actually this can be solved and yields y = z = 8

(11)1/3
, x = (11)2/3.)

Problem 4: Find the plane of the form

x

a
+
y

b
+
z

c
= 1

where a, b, c > 0 and that passes through the point (2, 1, 4) and cuts off the smallest volume
in the first octant.

The volume of the cutout region is
abc

6
which has to optimized over a, b, c given the constraint

2

a
+

1

b
+

4

c
= 1 .

Lagrange:
bc

6
= λ

2

a2
,
ac

6
= λ

1

b2
,
ab

6
= λ

4

c2

We find right away that λ 6= 0 and

2

a
=

1

b
=

4

c
=

1

3

because of the constraint. Hence a = 6, b = 3 and c = 12.

3. Double and triple integrals

Problem 5: Find the y moment of the first petal (mostly in the first quadrant) of the 3-leaf
rose r = cos(3θ). Just set up the integral (with limits) in polar coordinates. You do not have
to evaluate it.
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The cosine is positive for −π/6 < θ < π/6 , (3π)/6 ≤ θ ≤ (5π)/6 and (7π)/6 ≤ θ ≤ (9π)/6
Hence we take the limits −π/6 < θ < π/6 and find the integral in polar coordinates using
that y = r sin θ ∫ π/6

−π/6

∫ cos(3θ)

0

r sin θrdrdθ

(The integral actually vanishes. Just draw a picture.)

Problem 6: Compute the volume of the region that is bounded above by the plane z = y
and below by the paraboloid z = x2 + y2.

First we have to figure out the intersection of the plane with the paraboloid: y = x2 + y2

which leads to the equation x2 + y2 − y = 0. This is a circle given by x2 + (y − 1/2)2 = 1/4.
Hence the base of the solid over which we integrate is a disk centered at (0, 1/2) with radius
1/2. The integral can be set up in terms of cylindrical coordinates: x = r cos θ, y = r sin θ, z.
The disk is given by given by 0 ≤ r ≤ sin θ and 0 ≤ θ ≤ π. Hence we get∫ π

0

∫ sin θ

0

∫ r sin θ

r2
dzrdrdθ =

∫ π

0

∫ sin θ

0

[r sin θ − r2]rdrdθ =
1

12

∫ π

0

sin4 θdθ =
π

32

4. Surface Integrals

Problem 7: Find the surface area of the parabolic cylinder z = y2 that lies over the triangle
with vertices (0, 0), (0, 1), (1, 1) in the zy plane.

We can use the parametrization

~r = x~i+ y~j + y2~k

which leads to ~rx =~i , ~ry = ~j + 2y~k and ~rx × ~ry = ~k − 2y~j. Hence

|~rx × ~ry| =
√

1 + 4y2 .

The triangle with the given vertices can be written as the region in which 0 ≤ x ≤ y ≤ 1.
Thus we have to compute∫ 1

0

∫ y

0

√
1 + 4y2dxdy =

∫ 1

0

√
1 + 4y2ydy =

1

12
(1 + 4s)3/2

∣∣∣1
0

Problem 8: Consider the surface x2 + y2 + (z − 2)2 = 4, 0 ≤ z ≤ 2. (MISPRINT IN THE
PROBLEM). Convert via Stokes’ theorem the surface integral∫

S

∫
curlF · ~ndσ

to a line integral. Here ~F = x2y~i − xy2~j + sin z~k. Set this line integral up, parametrize
the curve, and reduce to an ordinary Calculus One integral with limits. Don’t evaluate this
integral.
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The surface is the top half of the sphere. If we take the outward normal to the sphere then
the curve bounding this region is the circle x(t) = 2 cos t , y(t) = 2 sin t , z = 2 , 0 ≤ t ≤ 2π.
This yields the right orientation. The vector field evaluated on this curve is

~F = 8 cos2 t sin t~i− 8 sin2 t cos t~j + sin 2~k

~r′(t) = −2 sin t~i+ 2 cos t~j

so that ∫ 2π

0

~F · ~r′(t)dt = −
∫ 2π

0

32 cos2 t sin2 tdt .

5. Line integrals and Stokes’ Theorem

Problem 9: Compute the line integral of the vector field

~F = (xyz + 1, x2z, x2y)exyz

along the curve given in parametrized form by

~r(t) = (cos t, sin t, t) , 0 ≤ t ≤ π .

The curl of ~F vanishes. Hence it suffices to compute the line integral along any curve that
connects the point (1, 0, 0) with (−1, 0, π). We take the straight line x(t) = 1 − 2t, y(t) = 0
and z(t) = tπ, 0 ≤ t ≤ 1. The tangent vector is

〈−2, 0, π〉

and the field along this line is
~F = 〈1, (1− 2t)2tπ, 0〉

so that ∫
C

~F · d~r = −2

Problem 10: Compute the line integral
∫
C
~F · ~dr where C is the curve given by the intersection

of the sphere x2 + y2 + z2 = 4 and the plane z = −y, counterclockwise when viewed from
above, and

~F = (x2 + y, x+ y, 4y2 − z) .

The curl of ~F is 8y~i. The next question is how to choose the surface with boundary C. We
are going to choose it as the disk cut by the plane z = −y from the sphere. The normal vector
is

~n =
1√
2
〈0, 1, 1〉 =

1√
2

(~j + ~k)

and hence the dot product of ~n with ~F is zero. Thus
∫
C
~F · d~r = 0.
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6. Divergence Theorem

Problem 11: Use the divergence theorem to compute the outward flux of the vector field

~F = (x2, y2, z2)

through the cylindrical can that is bounded on the side by the cylinder x2 + y2 = 4, bounded
above by z = 1 and below by z = 0.

Again, we invoke an integral theorem, but this time the divergence theorem. One computes
easily

div ~F = 2(x+ y + z)

and we have to integrate this over the cylinder. Using cylindrical coordinates

2

∫ 2π

0

∫ 2

0

∫ 1

0

[r(cos θ + sin θ) + z]dzrdrdθ = 4π .

One can try to compute the flux directly. For the flux through the top one has to integrate

(x2, y2, 1) · (0, 0, 1)

over the disk of radius 2, which yields 4π. The bottom disk is particularly easy since the normal
vector is (0, 0,−1) and the vector field is (x2, y2, 0) so that the dot product vanishes. Hence
there is no contribution. It remains to compute the flux through the side. The parametrization
of the cylinder is

~r(θ, z) = (2 cos θ, 2 sin θ, z)

so that
~rθ = (−2 sin θ, 2 cos θ, 0) , ~rz = (0, 0, 1)

and
~rθ × ~rz = 2(cos θ, sin θ, 0)

which obviously points outward. Now

~F · ~ndσ = ((2 cos θ)2, (2 sin θ)2, z2) · 2(cos θ, sin θ, 0)dθdz = 8((cos θ)3 + (sin θ)3)dθdz

and

8

∫ 1

0

∫ 2π

0

((cos θ)3 + (sin θ)3)dθdz = 0 .

Problem 12: Compute the flux of ~F = 5zy3~i+xz~j+3z~k through the surface x2 +y2 +z2 = 9
using the divergence theorem.

One computes div ~F = 3 and the volume of the ball with radius 3 equals 4π
3

33 = 36π and
hence we get for the flux

108π .


