NAME:

## QUIZ 10 FOR MATH 2551 F1-F4, NOVEMBER 28, 2018

This quiz should be taken without any notes and calculators. Time: 20 minutes. Show your work, otherwise credit cannot be given.

Problem 1: (3 points) Compute the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ where $C$ is given by $x \vec{i}+\left(1-x^{2}\right) \vec{j}$ with $x$ increasing from -1 to 1 and where $\vec{F}=2 x \vec{i}+2 y \vec{j}$.
$\vec{F}$ is a gradient field and hence the value depends only on the endpoints. Take the path $\vec{r}(x)=x \vec{i}$ then

$$
\vec{F} \cdot \vec{r}^{\prime}(x)=2 x
$$

and integrating this function from -1 to 1 yields 0 . Another way is to see that $\vec{F}=\nabla\left(x^{2}+y^{2}\right)$ and hence the value of the integral is the difference of the values of the function $x^{2}+y^{2}$ at the points $(1,0)$ and $(-1,0)$ which is zero.

Problem 2: (3 points) Find the circulation of the field $\vec{F}=-y \vec{i}+x \vec{j}$ in the counterclockwise sense around the curve given by the two arcs $y=x^{2}, y=x$ in the first quadrant. (Hint: Use Green's theorem).

By Green's theorem we have $N_{x}-M_{y}=2$. Hence the circulation is 2 times the area bounded by the curve.

$$
\int_{0}^{1} \int_{x^{2}}^{x} d y d x=\int_{0}^{1} x-x^{2} d x=\frac{1}{6}
$$

and hence the circulation is $1 / 3$.

Problem 3: (4 points) Use the parametrization $\vec{r}(x, y)=x \vec{i}+y \vec{j}+\sqrt{x^{2}+y^{2}} \vec{k}$ to compute the surface area of the cone given by $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.

$$
\begin{gathered}
\vec{r}_{x}=\vec{i}+\frac{x}{\sqrt{x^{2}+y^{2}}} \vec{k}, \vec{r}_{y}=\vec{j}+\frac{y}{\sqrt{x^{2}+y^{2}}} \vec{k} \\
\vec{r}_{x} \times \vec{r}_{y}=\vec{k}-\frac{y}{\sqrt{x^{2}+y^{2}}} \vec{j}-\frac{x}{\sqrt{x^{2}+y^{2}}} \vec{i} \\
\left|\vec{r}_{x} \times \vec{r}_{y}\right|=\sqrt{2}
\end{gathered}
$$

Integrating this over the disk $x^{2}+y^{2} \leq 1$ yields $\sqrt{2} \pi$

