QUIZ 1 FOR MATH 2551 F1-F4, AUGUST 29, 2018

This quiz should be taken without any notes and calculators. Time: 20 minutes. Show your work, otherwise credit cannot be given.

Problem 1:

a) (2 points) Find the angle between the vectors $\vec{a}=\langle 1,2,2\rangle$ and $\vec{b}=\langle 2,-2,1\rangle$

$$
\vec{a} \cdot \vec{b}=0
$$

angle is $\pi / 2$.
b) (2 points) Find the distance between the point $(1,1,1)$ and the point $(2,3,3)$.

The difference vector is $\langle 1,2,2\rangle$ and its length is 3 .

Problem 2: (3 points) The two planes $x+y+z=1$ and $2 x-y-z=2$ intersect in a line. Compute this line in parametrized from.

Have to row reduce the augmented system

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & -1 & -1 & 2
\end{array}\right]
$$

which leads to

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

and $z=t$ is a free variable. Hence

$$
x=1, y=-t, z=t
$$

Problem 3: (3 points) Find the distance of the point $(1,1,1)$ to the plane $x+y+z=0$.
Take the origin, which is a point on the plane. We have to project the vector $\overrightarrow{O P}$ onto the normal vector. Note that $\overrightarrow{O P}=\langle 1,1,1\rangle$ which is the same as the normal vector. Hence the projection is the vector itself and its length and hence the distance is $\sqrt{3}$.

Extra credit: (2 points) Find the distance between the point $(2,2,1)$ and the line

$$
x=t, y=t, z=t
$$

Pick any point on the line, e.g., $(0,0,0)$ which is the origin. Now we decompose the vector $\overrightarrow{O P}=\langle 2,2,1\rangle$ into a component parallel to $\vec{v}=\langle 1,1,1\rangle$ and a component perpendicular to \vec{v}. The component perpendicular is

$$
\vec{v}_{\perp}=\overrightarrow{O P}-\operatorname{Proj}_{\vec{v}} \overrightarrow{O P}=\overrightarrow{O P}-\frac{\overrightarrow{O P} \cdot \vec{v}}{|\vec{v}|^{2}} \vec{v}=\langle 2,2,1\rangle-\frac{5}{3}\langle 1,1,1\rangle
$$

which equals

$$
\frac{1}{3}\langle 1,1,-2\rangle
$$

and hence the distance is

$$
\frac{\sqrt{6}}{3}
$$

