NAME:

QUIZ 2 FOR MATH 2551 F1-F4, SEPTEMBER 5, 2018

This quiz should be taken without any notes and calculators. Time: 20 minutes. Show your work, otherwise credit cannot be given.

Problem 1: The position vector of a particle is given by

$$
\vec{r}(t)=\left\langle t^{2}, e^{t}, 1\right\rangle
$$

Find the velocity vector, the speed and the acceleration at time t. (1 point each)

$$
\vec{v}(t)=\left\langle 2 t, e^{t}, 0\right\rangle, s^{\prime}(t)=|\vec{v}(t)|=\sqrt{4 t^{2}+e^{2 t}}, \vec{a}(t)=\left\langle 2, e^{t}, 0\right\rangle
$$

Problem 2: (3 points) Find the line tangent to the curve

$$
\vec{r}(t)=\left\langle t, t^{2}, t\right\rangle
$$

at the point $\vec{r}(1)$, i.e., at $t=1$.
The line must pass through the point $(1,1,1)$ and has the direction $\vec{v}=\langle 1,2,1\rangle$ Hence the line is given by

$$
\vec{x}(s)=(1,1,1)+s\langle 1,2,1\rangle
$$

Problem 3: (4 points) A particle is moving along a trajectory $\vec{r}(t)$ in such a way that at time $t=0$ it passes through the point $\vec{r}(0)=\langle 1,0,0\rangle$. The velocity vector at any time t is given by

$$
\vec{v}(t)=\langle t, 1,0\rangle .
$$

Find $\vec{r}(t)$ for all t.
Integrating the velocity vector yields

$$
\vec{r}(t)=\left\langle\frac{t^{2}}{2}+x_{0}, t+y_{0}, z_{0}\right\rangle
$$

At the point $t=0$ we have that $\vec{r}(0)=\langle 1,0,0\rangle$ and hence $x_{0}=1, y_{0}=0$ and $z_{0}=0$ and the curve is given by

$$
\vec{r}(t)=\left\langle\frac{t^{2}}{2}+1, t, 0\right\rangle
$$

Extra credit: (1 point) A tennis ball moves horizontally towards a wall 10 m away at a speed of $108 \mathrm{~km} / \mathrm{h}$ (Neglect air resistance). How far has the ball dropped when it hits the wall. (use $g=10 \mathrm{~m} / \mathrm{s}^{2}$).

The ball takes $1 / 3$ of a second to hit the wall. Its vertical displacement is $-g t^{2} / 2$ which equals $-\frac{10}{2 \cdot 9} m=-\frac{5}{9} m$.

