NAME:

QUIZ 5 FOR MATH 2551 F1-F4, OCTOBER 3, 2018

This quiz should be taken without any notes and calculators. Time: 20 minutes. Show your work, otherwise credit cannot be given.

Problem 1: (3 points) Find the equation for the plane tangent to the surface $x^{2}+y^{2}+z^{2}=3$ at the point $(1,1,1)$.

Set $f(x, y, z)=x^{2}+y^{2}+z^{2}$. At the point $(1,1,1)$

$$
\nabla f=\langle 2,2,2\rangle
$$

Tangent plane

$$
2(x-1)+2(y-1)+2(z-1)=0
$$

Problem 2: (4 points) Find the the parametric equations for the line tangent to the curve of intersection of the surfaces $x y z=1$ and $x^{2}+2 y^{2}+3 z^{2}=6$ at the point $(1,1,1)$.

Set $f(x, y, z)=x y z$ and $g(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ then then at the point $(1,1,1$,

$$
\nabla f=\langle 1,1,1\rangle, \nabla g=\langle 2,4,6\rangle
$$

Direction of line

$$
\langle 1,1,1\rangle \times\langle 2,4,6\rangle=\langle 2,-4,2\rangle
$$

Point on the line $(1,1,1)$ so

$$
x=1+2 t, y=1-4 t, 1+2 t
$$

Note that the parametrization is not unique, e.g.,

$$
x=1+t, y=1-2 t, 1+2 t
$$

would be fine too.

Problem 3: (3 points) Find the linearization $L(x, y)$ of the function $f(x, y)=x^{2}+y^{2}+1$ at the point $(1,1)$. The partials at the point $(1,1)$ are

$$
f_{x}(1,1)=2, f_{y}(1,1)=2
$$

and hence the linearization is given by

$$
L(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)=3+2(x-1)+2(y-1) .
$$

