NAME:

QUIZ 6 FOR MATH 2551 F1-F4, OCTOBER 10, 2018

This quiz should be taken without any notes and calculators. Time: 20 minutes. Show your work, otherwise credit cannot be given.

Problem 1: (3 points) Find the points in the plane where the function $f(x, y)=x^{2} y+x-y$ has its local extrema.

$$
f_{x}=2 x y+1=0, f_{y}=x^{2}-1
$$

Hence $x= \pm 1$ and $y=-\frac{1}{2 x}=\mp \frac{1}{2}$, i.e., the places for the local extrema are $\left(1,-\frac{1}{2}\right)$ and ($-1, \frac{1}{2}$).

Problem 2: (4 points) The function $f(x, y)=2 x^{2}-4 x y+y^{2}$ has $(0,0)$ as its only local extremum. What is its type, i.e., is it a local min, a local max or a saddle point?

We have

$$
f_{x x}=4, f_{y y}=2, f_{x y}=-4
$$

The determinant of the Hessian matrix is -8 and hence it is a saddle point.

Problem 3: (3 points) Use the method of Lagrange multipliers to find the point on the plane $3 x+2 y+z=6$ that is closest to the origin. (The right answer with any other method yields 1 point.)

We minimize the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ given that $g(x, y, z)=3 x+2 y+z-6=0$.

$$
\nabla f=2\langle x, y, z\rangle, \nabla g=\langle 3,2,1\rangle
$$

The Lagrange equation is $\nabla f=\lambda \nabla g$ so that

$$
2 x=3 \lambda, 2 y=2 \lambda, 2 z=\lambda
$$

which yields

$$
x=\frac{3 \lambda}{2}, y=\lambda, z=\frac{\lambda}{2}
$$

and the equation $3 x+2 y+z-6=0$ yields $\frac{9 \lambda}{2}+2 \lambda+\frac{\lambda}{2}-6=7 \lambda-6=0$ and hence

$$
\lambda=\frac{6}{7}, x=\frac{9}{7}, y=\frac{6}{7}, z=\frac{3}{7}
$$

