NAME:

QUIZ 6 FOR MATH 2551 F1-F4, OCTOBER 10, 2018

This quiz should be taken without any notes and calculators. Time: 20 minutes. Show your work, otherwise credit cannot be given.

Problem 1: (3 points) Find the points in the plane where the function $f(x, y) = x^2y + x - y$ has its local extrema.

 $f_x = 2xy + 1 = 0$, $f_y = x^2 - 1$

Hence $x = \pm 1$ and $y = -\frac{1}{2x} = \pm \frac{1}{2}$, i.e., the places for the local extrema are $(1, -\frac{1}{2})$ and $(-1, \frac{1}{2})$.

Problem 2: (4 points) The function $f(x, y) = 2x^2 - 4xy + y^2$ has (0,0) as its only local extremum. What is its type, i.e., is it a local min, a local max or a saddle point?

We have

$$f_{xx} = 4$$
, $f_{yy} = 2$, $f_{xy} = -4$

The determinant of the Hessian matrix is -8 and hence it is a saddle point.

Problem 3: (3 points) Use the method of Lagrange multipliers to find the point on the plane 3x + 2y + z = 6 that is closest to the origin. (The right answer with any other method yields 1 point.)

We minimize the function $f(x, y, z) = x^2 + y^2 + z^2$ given that g(x, y, z) = 3x + 2y + z - 6 = 0. $\nabla f = 2\langle x, y, z \rangle$, $\nabla g = \langle 3, 2, 1 \rangle$

The Lagrange equation is $\nabla f = \lambda \nabla g$ so that

$$2x = 3\lambda$$
, $2y = 2\lambda$, $2z = \lambda$

which yields

$$x = \frac{3\lambda}{2}, \ y = \lambda, \ z = \frac{\lambda}{2}$$

and the equation $3x + 2y + z - 6 = 0$ yields $\frac{9\lambda}{2} + 2\lambda + \frac{\lambda}{2} - 6 = 7\lambda - 6 = 0$ and hence
 $\lambda = \frac{6}{7}, x = \frac{9}{7}, \ y = \frac{6}{7}, \ z = \frac{3}{7}$