NAME:

QUIZ 7 FOR MATH 2551 F1-F4, OCTOBER 24, 2018

This quiz should be taken without any notes and calculators. Time: 20 minutes. Show your work, otherwise credit cannot be given.

Problem 1: (3 points) Evaluate the double integral over the given region R :

$$
\int_{R} \int\left(6 y^{2}-2 x\right) d A, R: 0 \leq x \leq 1,0 \leq y \leq 2
$$

Have to evaluate

$$
\begin{gathered}
\int_{0}^{2} \int_{0}^{1}\left(6 y^{2}-2 x\right) d x d y=\left.\int_{0}^{2}\left(6 y^{2} x-x^{2}\right)\right|_{0} ^{1} d y \\
=\int_{0}^{2}\left(6 y^{2}-1\right) d y=\left.\left(2 y^{3}-y\right)\right|_{0} ^{2}=14
\end{gathered}
$$

Problem 2: (4 points) For the integral below write an equivalent integral with the order of integration reversed:

$$
\int_{0}^{1} \int_{2}^{4-2 x} d y d x
$$

(Hint: Sketch the region of integration.)
The integral in reverse order of integration is given by

$$
\int_{2}^{4} \int_{0}^{2-\frac{y}{2}} d x d y
$$

Problem 3: (3 points) Find the volume of the prism whose base in the $x y$ plane is bounded by the x axis and the lines $y=x$ and $x=1$ and whose top lies in the plane $z=1+x+y$.

We integrate

$$
\int_{0}^{1} \int_{0}^{x}(1+x+y) d y=\left.\int_{0}^{1}\left(y+x y+\frac{y^{2}}{2}\right)\right|_{0} ^{x} d x=\int_{0}^{1}\left(x+\frac{3}{2} x^{2}\right) d x=1
$$

