NAME:

QUIZ 9 FOR MATH 2551 F1-F4, NOVEMBER 14, 2018

This quiz should be taken without any notes and calculators. Time: 20 minutes. Show your work, otherwise credit cannot be given.

Problem 1: (3 points) Find the volume of the solid enclosed by the cylinder $x^{2}+y^{2}=4$, bounded above by the paraboloid $z=x^{2}+y^{2}$ and below by the $x y$-plane. (Hint: use cylindrical coordinates)

The integral is

$$
\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{r^{2}} d z r d r d \theta=2 \pi \int_{0}^{2} r^{3} d r=8 \pi
$$

Problem 2: (3 points) Solve the system $u=x+y, v=x-y$ for x, y and compute the Jacobian $\frac{\partial(x, y)}{\partial(u v)}$.

$$
x=\frac{u+v}{2}, y=\frac{u-v}{2}
$$

and

$$
\frac{\partial(x, y)}{\partial(u v)}=\left|\operatorname{det}\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]\right|=\frac{1}{2}
$$

Problem 3: (4 points) Find the work done by the force $\vec{F}=\langle x y, y,-y z\rangle$ along the curve $\mathbf{r}(t)=\left(t, t^{2}, t\right), 0 \leq t \leq 1$ in the direction of increasing t.
\vec{F} along the curve is given by

$$
\left\langle t^{3}, t^{2},-t^{3}\right\rangle
$$

and

$$
\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle
$$

so that

$$
\vec{F} \cdot \mathbf{r}^{\prime}(t)=2 t^{3}
$$

and the work is $\int_{0}^{1} 2 t^{3} d t=\frac{1}{2}$.

