NAME:

SECTION:

TEST 1 FOR MATH 2551 F1-F4, SEPTEMBER 26, 2018

IMPORTANT: WRITE YOUE NAME AND SECTION NUMBER ON EVERY PAGE!

This test should be taken without any notes and calculators. Time: 50 minutes. Show your work and write legibly otherwise credit cannot be given. If you realize that you have written something which is wrong then, please, cross it out.

$$\begin{split} \vec{a} &= \langle a_1, a_2, a_3 \rangle \ , \vec{b} &= \langle b_1, b_2, b_3 \rangle \\ \vec{a} \times \vec{b} &= \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle \end{split}$$

Problem 1:

Problem 2:

Problem 3:

Problem 4:

Problem 5:

Problem 6:

Total:

NAME:

SECTION:

Problem 1: (10 points) Compute the area of the parallelogram spanned by the vectors

(1, 2, 3), (3, 2, 1).

(Check your answer!)

$$\langle 1, 2, 3 \rangle \times \langle 3, 2, 1 \rangle = \langle -4, 8, -4 \rangle$$

The area is given by the magnitude of the vector $\langle -4, 8, -4 \rangle = 4 \langle -1, 2, -1 \rangle$ which is $4\sqrt{6}$.

Problem 2: Given the vector $\vec{v} = \langle 2, 1, 2 \rangle$ and the vector $\vec{b} = \langle 1, 2, 1 \rangle$. a) (10 points) Find the projection $P_{\vec{v}}\vec{b}$ of the vector \vec{b} onto the vector \vec{v} .

$$P_{\vec{v}}\vec{b} = \frac{\vec{v}\cdot\vec{b}}{|\vec{v}|^2}\vec{v} = \frac{6}{9}\langle 2, 1, 2 \rangle = \frac{2}{3}\langle 2, 1, 2 \rangle$$

b) (5 points) Compute the vector $\vec{b} - P_{\vec{v}}\vec{b}$.

$$\langle 1, 2, 1 \rangle - \frac{2}{3} \langle 2, 1, 2 \rangle = \frac{1}{3} \left[\langle 3, 6, 3 \rangle - \langle 4, 2, 4 \rangle \right] = \frac{1}{3} \langle -1, 4, -1 \rangle$$

c) (5 points) What can you say about the dot product of the vector \vec{v} with $\vec{b} - P_{\vec{v}}\vec{b}$ This dot product must vanish! **Problem 3:** Consider the point (1, 2, 3) and the plane

$$x + y + z = 1 \ .$$

a) (5 points) Find any point P on the plane.

$$P = (1, 0, 0)$$

b) (5 points) Find the distance vector between the point P you found in problem a) and the given point (1, 2, 3).

 $\langle 0, 2, 3 \rangle$

c) (10 points) Compute the distance of the point (1, 2, 3) to the plane x + y + z = 1. Project the vector obtained in problem b) onto the vector normal to the plane, which is given by $\langle 1, 1, 1 \rangle$. This is $\frac{5}{3} \langle 1, 1, 1 \rangle$

Problem 4: Given the Helix

$$\vec{r}(t) = \langle \cos t, \sin t, t \rangle, t \in \mathbb{R}$$
.

 $\frac{5}{\sqrt{3}}$

a) (5 points) Find the velocity vector $\vec{v}(t)$.

$$\langle -\sin t, \cos t, 1 \rangle$$

b) (10 points) Find the line tangent to the Helix at the point given by $t = \pi/2$. The velocity vector at that point is $\langle -1, 0, 1 \rangle$. The point common to the Helix and the tangent line is $(0, 1, \pi/2)$. Hence the tangent line is given by

$$(0,1,\pi/2)+s\langle -1,0,1\rangle$$

or

$$x = -s, y = 1, z = \pi/2 + s$$

NAME:

SECTION:

Problem 5: A particle has a trajectory given by $\vec{r}(t) = \langle \cos t, \sin t, -5t^2 \rangle$ a) (5 points) Find the speed s'(t) of the particle.

The velocity vector is $\vec{v}(t) = \langle -\sin t, \cos t, -10t \rangle$ and the speed $s'(t) = \sqrt{1 + 100t^2}$

b) (5 points) Find the tangential acceleration a_T .

$$a_T = s''(t) = \frac{100t}{\sqrt{1+100t^2}}$$

c) (10 points) Find the normal acceleration a_N .

The acceleration is

$$\vec{a}(t) = \langle -\cos t, -\sin t, -10 \rangle$$

so that $|\vec{a}|^2 = 1 + 100 = 101$. Now

$$a_N^2 = |\vec{a}|^2 - a_T^2 = 101 - \frac{10000t^2}{1 + 100t^2} = \frac{101 + 10100t^2 - 10000t^2}{1 + 100t^2} = \frac{101 + 100t^2}{1 + 100t^2}$$

Hence

$$a_N = \sqrt{\frac{101 + 100t^2}{1 + 100t^2}}$$

Problem 6: True or false (no partial credit).

a) (5 points) The function

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is not continuous at (0,0). TRUE

b) (5 points) If f(x, y) is a continuous function on \mathbb{R}^2 and g(s) is a continuous function on \mathbb{R} , then g(f(x, y)) is a continuous function on \mathbb{R}^2 . TRUE

c) (5 points) If f(x, y) converges to f(0, 0) along every straight line through the origin, then f(x, y) is continuous at (0, 0). FALSE