NAME:

SECTION:

TEST 1 FOR MATH 2551 F1-F4, SEPTEMBER 26, 2018

IMPORTANT: WRITE YOUE NAME AND SECTION NUMBER ON EVERY PAGE!

This test should be taken without any notes and calculators. Time: 50 minutes. Show your work and write legibly otherwise credit cannot be given. If you realize that you have written something which is wrong then, please, cross it out.

$$
\begin{gathered}
\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle \\
\vec{a} \times \vec{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
\end{gathered}
$$

Problem 1:

Problem 2:

Problem 3:

Problem 4:

Problem 5:

Problem 6:

Total:

NAME:

SECTION:

Problem 1: (10 points) Compute the area of the parallelogram spanned by the vectors $\langle 1,2,3\rangle,\langle 3,2,1\rangle$.
(Check your answer!)

$$
\langle 1,2,3\rangle \times\langle 3,2,1\rangle=\langle-4,8,-4\rangle
$$

The area is given by the magnitude of the vector $\langle-4,8,-4\rangle=4\langle-1,2,-1\rangle$ which is $4 \sqrt{6}$.

Problem 2: Given the vector $\vec{v}=\langle 2,1,2\rangle$ and the vector $\vec{b}=\langle 1,2,1\rangle$.
a) (10 points) Find the projection $P_{\vec{v}} \vec{b}$ of the vector \vec{b} onto the vector \vec{v}.

$$
P_{\vec{v}} \vec{b}=\frac{\vec{v} \cdot \vec{b}}{|\vec{v}|^{2}} \vec{v}=\frac{6}{9}\langle 2,1,2\rangle=\frac{2}{3}\langle 2,1,2\rangle
$$

b) (5 points) Compute the vector $\vec{b}-P_{\vec{v}} \vec{b}$.

$$
\langle 1,2,1\rangle-\frac{2}{3}\langle 2,1,2\rangle=\frac{1}{3}[\langle 3,6,3\rangle-\langle 4,2,4\rangle]=\frac{1}{3}\langle-1,4,-1\rangle
$$

c) (5 points) What can you say about the dot product of the vector \vec{v} with $\vec{b}-P_{\vec{v}} \vec{b}$ This dot product must vanish!

Problem 3: Consider the point $(1,2,3)$ and the plane

$$
x+y+z=1 .
$$

a) (5 points) Find any point P on the plane.

$$
P=(1,0,0)
$$

b) (5 points) Find the distance vector between the point P you found in problem a) and the given point $(1,2,3)$.

$$
\langle 0,2,3\rangle
$$

c) (10 points) Compute the distance of the point $(1,2,3)$ to the plane $x+y+z=1$. Project the vector obtained in problem b) onto the vector normal to the plane, which is given by $\langle 1,1,1\rangle$. This is

$$
\frac{5}{3}\langle 1,1,1\rangle
$$

and the distance is

$$
\frac{5}{\sqrt{3}}
$$

Problem 4: Given the Helix

$$
\vec{r}(t)=\langle\cos t, \sin t, t\rangle, t \in \mathbb{R}
$$

a) (5 points) Find the velocity vector $\vec{v}(t)$.

$$
\langle-\sin t, \cos t, 1\rangle
$$

b) (10 points) Find the line tangent to the Helix at the point given by $t=\pi / 2$.

The velocity vector at that point is $\langle-1,0,1\rangle$. The point common to the Helix and the tangent line is $(0,1, \pi / 2)$. Hence the tangent line is given by

$$
(0,1, \pi / 2)+s\langle-1,0,1\rangle
$$

or

$$
x=-s, y=1, z=\pi / 2+s
$$

NAME:

SECTION:

Problem 5: A particle has a trajectory given by $\vec{r}(t)=\left\langle\cos t, \sin t,-5 t^{2}\right\rangle$
a) (5 points) Find the speed $s^{\prime}(t)$ of the particle.

The velocity vector is $\vec{v}(t)=\langle-\sin t, \cos t,-10 t\rangle$ and the speed $s^{\prime}(t)=\sqrt{1+100 t^{2}}$
b) (5 points) Find the tangential acceleration a_{T}.

$$
a_{T}=s^{\prime \prime}(t)=\frac{100 t}{\sqrt{1+100 t^{2}}}
$$

c) (10 points) Find the normal acceleration a_{N}.

The acceleration is

$$
\vec{a}(t)=\langle-\cos t,-\sin t,-10\rangle
$$

so that $|\vec{a}|^{2}=1+100=101$. Now

$$
a_{N}^{2}=|\vec{a}|^{2}-a_{T}^{2}=101-\frac{10000 t^{2}}{1+100 t^{2}}=\frac{101+10100 t^{2}-10000 t^{2}}{1+100 t^{2}}=\frac{101+100 t^{2}}{1+100 t^{2}}
$$

Hence

$$
a_{N}=\sqrt{\frac{101+100 t^{2}}{1+100 t^{2}}}
$$

Problem 6: True or false (no partial credit).
a) (5 points) The function

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

is not continuous at $(0,0)$. TRUE
b) (5 points) If $f(x, y)$ is a continuous function on \mathbb{R}^{2} and $g(s)$ is a continuous function on \mathbb{R}, then $g(f(x, y))$ is a continuous function on \mathbb{R}^{2}. TRUE
c) (5 points) If $f(x, y)$ converges to $f(0,0)$ along every straight line through the origin, then $f(x, y)$ is continuous at $(0,0)$. FALSE

