HOMEWORK 1, DUE JANUARY 26 IN CLASS

Problem 1: (This problem uses facts from real analysis) Let $u \in W^{1,p}(0,1)$ for $1 \le p \le \infty$. Show that u equals almost everywhere an absolutely continuous function v and its weak derivative u' equals the pointwise derivative v' almost everywhere. (Hint: Pick $b > a \in (0,1)$ and arbitrary. Consider the function $\psi_{\varepsilon}(x) = \phi_{\varepsilon}(x-b) - \phi_{\varepsilon}(x-a)$, set $\eta_{\varepsilon} = \int_0^x \psi_{\varepsilon}(z) dz$, use the definition of the weak derivative and let ε go to zero. Here ϕ_{ε} is a non-negative 'bump' function, i.e., smooth with support in $(-\varepsilon, \varepsilon)$ and $\int \phi_{\varepsilon}(x) dx = 1$)

Problem 2: a) Prove the inequality

 $||f||_{\infty}^{2} \leq ||f||_{L^{2}(\mathbb{R})} ||f'||_{L^{2}(\mathbb{R})}$

for all functions in $C_c^1(\mathbb{R})$. (Hint: Write $f(x)^2 = 2 \int_{-\infty}^x ff' dx$ and also $f(x)^2 = -2 \int_x^\infty ff' dx$ and use Schwarz's inequality.)

b) Is there a function, not necessarily in $C_c^1(\mathbb{R})$, that yields equality?

Problem 3: Fix any point $x_0 \in \mathbb{R}$ and consider the linear functional $\ell(\phi) = \phi(x_0)$ where $\phi \in C_c^{\infty}(\mathbb{R})$.

a) Show that ℓ can be uniquely extended to a bounded linear functional on $H^1(\mathbb{R})$.

b) Show that there exists a unique $u_0 \in H^1(\mathbb{R})$ such that $(u_0, v)_{H^1(\mathbb{R})} = \ell(v)$ for all $v \in H^1(\mathbb{R})$ and check that $u_0(x) = e^{-|x-x_0|}$.

Problem 4: A function $u : \mathbb{R}^n \to \mathbb{R}$ is Hölder continuous of order $0 < \alpha < 1$ if |u(x) - u(y)|

$$||u||_{C^{\alpha}} := ||u||_{\infty} + \sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} < \infty$$

This space $C^{\alpha}(\mathbb{R})$ is a Banach space. Show that any function $u \in W^{1,p}(\mathbb{R})$ for some $1 \leq p < \infty$ is almost everywhere equal to a function that is Hölder continuous of order $\alpha = 1 - \frac{1}{p}$. (Hint: Prove the estimate

$$\|u\|_{C^{\alpha}} \le C \|u\|_{W^{1,p}(\mathbb{R})}$$

for functions $u \in C_c^1(\mathbb{R})$ and then use the fact that these functions are dense in $W^{1,p}(\mathbb{R})$.)