
HOMEWORK 1, DUE JANUARY 26 IN CLASS

Problem 1: (This problem uses facts from real analysis) Let u ∈ W 1,p(0, 1) for 1 ≤ p ≤ ∞.
Show that u equals almost everywhere an absolutely continuous function v and its weak
derivative u′ equals the pointwise derivative v′ almost everywhere. (Hint: Pick b > a ∈ (0, 1)
and arbitrary. Consider the function ψε(x) = φε(x− b)− φε(x− a), set ηε =

∫ x
0
ψε(z)dz, use

the definition of the weak derivative and let ε go to zero. Here φε is a non-negative ‘bump’
function, i.e., smooth with support in (−ε, ε) and

∫
φε(x)dx = 1)

Solution: Using the hint, we consider

u ? φε(b)− u ? φε(a) =

∫ 1

0

uψε = −
∫ 1

0

u′ηε .

Since u ∈ Lp(0, 1) there exists a sequence εj → 0 such that the left side converges to u(b)−u(a)
for almost every a, b whereas ηε converges pointwise a.e. to the characteristic function of the
interval [a, b]. Hence, by dominated convergence we have that for a.e. a, b ∈ (0, 1)

u(b)− u(a) =

∫ b

a

u′dx .

Pick a such that the above holds for almost every b. The function v(b) =
∫ b
a
u′dx is absolutely

continuous (why?) and hence u = v almost everywhere. By the integration by parts formula,
which holds for absolutely continuous functions, we have for any φ ∈ C∞c (0, 1)∫

v′φdx = −
∫
vφ′dx = −

∫
uφ′dx =

∫
u′φdx

and hence u′ = v′ a.e.

Problem 2: a) Prove the inequality

‖f‖2∞ ≤ ‖f‖L2(R)‖f ′‖L2(R)

for all functions in C1
c (R). (Hint: Write f(x)2 = 2

∫ x
−∞ ff

′dx and also f(x)2 = −2
∫∞
x
ff ′dx

and use Schwarz’s inequality.)
b) Is there a function, not necessarily in C1

c (R), that yields equality?

Solution: Using the hint we find that

2f(x)2 ≤ 2

∫ ∞
−∞
|f ||f ′|dx

which by Schwarz’s inequality leads to the desired conclusion. To solve b) consider the function
g(x) = e−a|x| where a > 0 is a constant. Clearly

‖g‖2∞ = 1
1
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and

‖g‖22 =
1

a
, ‖g′‖22 = a

and hence there is equality. One can show that any function that yields equality is of the form

Ce−a|x−b|

where a > 0, b, C > 0 are constants.

Problem 3: Fix any point x0 ∈ R and consider the linear functional `(φ) = φ(x0) where
φ ∈ C∞c (R.

a) Show that ` can be uniquely extended to a bounded linear functional on H1(R).
b) Show that there exists a unique u0 ∈ H1(R) such that (u0, v)H1(R) = `(v) for all v ∈ H1(R)

and check that u0(x) = e−|x−x0|.

Solution: Using the previous result we find that for any φ ∈ C∞c (R) we have that

|`(φ)| = |φ(x0)| ≤ [‖φ‖L2(R)‖fφ′‖L2(R)]
1/2 ≤ 1√

2
[‖φ‖2L2(R) + ‖fφ′‖2L2(R)]

1/2 =
1√
2
‖φ‖H1(R)

hence ` can be extended to a bounded linear functional on all of H1 since C∞c (R) is dense.
Likewise, the extension is unique because C∞c (R) is dense in H1(R). For, if `1 and `2 are two
extensions then for any u ∈ H1(R) we may pick a sequence φk ∈ C∞c (R) converging to u in
H1(R) and hence

|`1(u)− `2(u)| ≤ |`1(u)− `1(φk)|+ |`2(u)− `2(φk)|+ |`1(φk)− `2(φk)|
and since the last term vanishes and the others tend to zero we have that `1(u) = `2(u). This
is an instance of the fact that any bounded linear operator defined on a dense set can be
uniquely extended as a bounded operator. By the Riesz representation theorem there exists
a unique u0 ∈ H1(R) such that

`(v) =

∫
(u0v + u′0v

′)dx .

Now we integrate by parts and we see that∫
[−v′′ + v]u0dx = v(x0)

where v ∈ C∞c (R). consider v with supp v ⊂ (x0,∞) then if we choose u0 = Ae−(x−x0) we see
by integration by parts that∫

[−v′′ + v]u0dx =

∫
[−u′′0 + u0]vdx = 0 .

The same holds if v has support on the left of x0 but we have to choose u0 = Ae(x−x0) in other
words our candidate is

u0(x) = Ae−|x−x0| .

Now we compute∫
[u0v + u′0v

′]dx =

∫ x0

−∞
[u0 − u′′0]vdx+ u′0v

∣∣∣x0
−∞

+

∫ ∞
x0

[u0 − u′′0]vdx+ u′0v
∣∣∣∞
x0

= 2Av(x0)
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and hence 1
2
e−|x−x0| is the unique function that does the job.

Problem 4: A function u : Rn → R is Hölder continuous of order 0 < α < 1 if

‖u‖Cα := ‖u‖∞ + sup
x 6=y

|u(x)− u(y)|
|x− y|α

<∞ .

This space Cα(R) is a Banach space. Show that any function u ∈ W 1,p(R) for some 1 ≤ p <∞
is almost everywhere equal to a function that is Hölder continuous of order α = 1− 1

p
. (Hint:

Prove the estimate
‖u‖Cα ≤ C‖u‖W 1,p(R)

for functions u ∈ C1
c (R) and then use the fact that these functions are dense in W 1,p(R).)

Solution: For u ∈ C1
c (R) we have by Hölder’s inequality

u(x)p = p

∫ x

−∞
up−1u′dx ≤ p‖u′‖p‖up−1‖q ≤ p‖u′‖p‖u‖p−1p

since q = p
p−1 . In a further step we use the fundamental theorem of calculus and estimate

|u(a)− u(b)| ≤
∫ a

b

|u′|dx ≤ |b− a|
1
q ‖u′‖p

where once more q = p
p−1 . Hence, with α = p−1

p
we get that

|u(a)− u(b)|
|b− a|α

≤ ‖u′‖p ≤ ‖u‖W 1,p(R) .

We are basically done. We may improve the presentation by using Young’s inequality which
says that for any positive numbers a, b we have that

ab ≤ 1

p
ap +

1

q
bq

so that

‖u′‖p‖u‖p−1p ≤ 1

p
‖u′‖pp +

p− 1

p
‖u‖pp

and hence
u(x)p ≤ ‖u′‖pp + (p− 1)‖u‖pp ≤ p‖u‖pW 1,p(R)

which shows that
‖u‖Cα ≤ (1 + p1/p)‖u‖W 1,p(R) . (1)

If u ∈ W 1,p(R), there exists a sequence uk of functions in C1
c (R) such that

‖u− uk‖W 1,p(R) → 0

as k →∞ and hence uk is a Cauchy sequence in Cα(R) by (??) and hence converges to some
function v. Note that this convergence is uniform and hence for any φ ∈ C∞c (R)∫

R
uφdx = lim

k→∞

∫
R
ukφdx =

∫
R
vφdx

and we conclude that u = v almost everywhere.


