HOMEWORK 2, DUE FEBRUARY 9 IN CLASS

Problem 1: a) Let U be open. Prove the inequality

$$||Du||_{L^{2}(U)}^{2} \leq ||u||_{L^{2}(U)} ||\Delta u||_{L^{2}(U)}$$

for $u \in C_c^{\infty}(U)$.

Solution: We have that

$$\int_{U} |Du|^2 dx = -\int_{U} u\Delta u dx \le ||u||_{L^2(U)} ||\Delta u||_{L^2(U)}$$

using Schwarz's inequality.

b) Let U be open, bounded and ∂U be C^{∞} . Prove that the inequality continuous to hold for all $u \in H^2(U) \cap H^1_0(U)$. (Hint: First use a sequence in $C_c^{\infty}(U)$ to prove the inequality for $u \in H^2_0(U)$. Then use an approximating sequence $u_k \in C^{\infty}(\overline{U})$ to prove it for $u \in H^2(U) \cap H^1_0(U)$. Note, that the trace theorem is useful in this context.)

Solution: Let $u \in H_0^2(U)$. There exists $u_k \in C_c^{\infty}(U)$ convergent to u in $H^2(U)$. Because

$$\int_{U} |Du|^2 dx = \lim_{k \to \infty} \int_{U} |Du_k|^2 dx \le \lim_{k \to \infty} ||u_k||_{L^2(U)} ||\Delta u_k||_{L^2(U)} = ||u||_{L^2(U)} ||\Delta u||_{L^2(U)}$$

the inequality follows for all $u \in H_0^2(U)$. Now, let $u \in H^2(U) \cap H_0^1(U)$. There exists $u_k \in C^{\infty}(\overline{U})$ such that u_k converges to u in $H^2(U)$. The function u is also in $H_0^1(U)$ and hence the trace Tu_k converges to Tu in $L^2(\partial U)$ which, however, equals to zero a.e. on ∂U . Hence $Tu_k \to 0$ in $L^2(\partial U)$. Since ∂U is smooth, we may use Gauss's theorem

$$\int_{U} |Du_k|^2 dx = -\int_{U} u_k \Delta u_k dx + \int_{\partial U} u_k N \cdot Du_k dS$$

where N is the outward normal. Now

$$\left|\int_{\partial U} u_k N \cdot Du_k dS\right| \le \|u_k\|_{L^2(\partial U)} \|Du_k\|_{L^2(\partial U)} .$$

Since $u \in H^2(U)$ we know that $u_{x_i} \in H^1(U)$ and hence it has a trace in $L^2(U)$. Thus,

$$||u_k||_{L^2(\partial U)} ||Du_k||_{L^2(\partial U)} \le ||u_k||_{L^2(\partial U)} ||u_k||_{H^2(U)}$$

which converges to 0 as $k \to \infty$. By Schwarz's inequality as before

$$|-\int_{U} u_k \Delta u_k dx| \le ||u_k||_{L^2(U)} ||\Delta u_k||_{L^2(U)}$$

and as $k \to \infty$ the desired inequality emerges.

Problem 2: Suppose that U is open and connected and that $u \in W^{1,p}(U)$ with

$$Du = 0$$

a.e. in U. Show that u is constant a.e. in U.

Solution: Consider the domain $U_{\varepsilon} = \{x \in U : \operatorname{dist}(x, \partial U) > \varepsilon\}$. For $x \in U_{\varepsilon}$ consider the function $u_{\varepsilon}(x) = \int \eta_{\varepsilon}(x-y)u(y)dy$ where η_{ε} is a standard molifier. $u_{\varepsilon} \in C^{\infty}(U_{\varepsilon})$ and

$$Du_{\varepsilon}(x) = \int \eta_{\varepsilon}(x-y)Du(y)dy$$

by the definition of the weak derivative. Sine Du = 0 a.e., we have that $Du_{\varepsilon}(x) = 0$ for all $x \in U_{\varepsilon}$ and hence u_{ε} is constant in U_{ε} . Since $||u_{\varepsilon} - u||_{L^{p}(U_{\varepsilon})} \to 0$ as $\varepsilon \to 0$, we have that u is constant a.e..

Problem 3: Let $F : \mathbb{R} \to \mathbb{R}$ be a C^1 function such that F' is bounded. Suppose further that $U \subset \mathbb{R}^n$ is a bounded domain and that $u \in W^{1,p}(U)$ for some $1 \le p \le \infty$. Show that $F(u) \in W^{1,p}(U)$ and that as weak derivatives

$$F(u)_{x_i} = F'(u)u_{x_i} , \ i = 1, \dots, n$$
.

(Hint: Use that any sequence that converges in L^p has a subsequence that converges pointwise a.e.)

Solution: Let $u \in W^{1,p}(U)$. There exists $u_k \in C^{\infty}(U) \cap W^{1,p}(U)$ such that

$$||u - u_k||_{W^{1,p}(U)} \to 0$$

as $k \to \infty$. Now

$$F(u_k)(x) - F(u_\ell)(x)| \le C|u_k(x) - u_\ell(x)|$$

since F' is bounded. Moreover

$$DF(u_k)(x) = F'(u_k)(x)Du_k(x)$$

From this it follows that for any test function $\phi \in C_c^{\infty}(U)$

$$\int F(u)D\phi dx = \lim_{k \to \infty} \int F(u_k)D\phi dx = -\lim_{k \to \infty} \int F'(u_k)Du_k\phi dx \; .$$

We may choose a subsequence so that u_k tends a.e. to u and hence $F'(u_k)$ a.e. to F'(u). Now

$$|\int [F'(u_k)Du_k - F'(u)Du]\phi dx| = |\int [F'(u_k) - F'(u)]Du_k + F'(u)[Du_k - Du]\phi dx$$
$$\leq C \int |F'(u_k) - F'(u)|^2 |\phi dx + ||F'(u)||_{\infty} ||u_k - u||_{W^{1,p}(U)}$$

which tends to zero. Hence

$$\int F(u)D\phi dx = -\int F'(u)Du\phi dx \; .$$

Since U is bounded $F(u) \in L^p(U)$ and since F'(u) is bounded $F'(u)u_{x_i} \in L^p(U)$ and hence $F(u) \in W^{1,p}(U)$.

Problem 4: Assume that U is bounded. Use Problem 3 and the function

$$F_{\varepsilon}(z) = \begin{cases} (z^2 + \varepsilon^2)^{1/2} - \varepsilon & \text{if } z \ge 0\\ 0 & \text{if } z < 0 \end{cases}$$

to show that for any function $u \in W^{1,p}(U)$, $u_+(x) = \max(u(x), 0)$ is in $W^{1,p}(U)$ and that

$$Du_{+} = \begin{cases} Du & \text{a.e. on } \{u > 0\} \\ 0 & \text{a.e. on } \{u \le 0\} \end{cases}.$$

Solution: The function F_{ε} is continuously differentiable, in fact its derivative is

$$F'_{\varepsilon}(z) = \begin{cases} \frac{z}{\sqrt{z^2 + \varepsilon^2}} & \text{for } z > 0\\ 0 & \text{for } z \le 0 \end{cases}$$

which is bounded by 1 and continuous. Moreover, we have that

$$F_{\varepsilon}(z) \leq |z|$$

and

$$\lim_{\varepsilon \to 0} F_{\varepsilon} = \max(z, 0)$$

Hence by the previous problem, for every $\varepsilon > 0$ $F_{\varepsilon}(u) \in W^{1,p}(U)$ and its weak derivative is given by

$$DF_{\varepsilon}(u) = F'_{\varepsilon}(u)Du$$
.

Hence for any test function ϕ using dominated convergence

$$\int u_{+} D\phi dx = \lim_{\varepsilon \to 0} \int F_{\varepsilon}(u) D\phi dx = -\lim_{\varepsilon \to 0} \int F_{\varepsilon}'(u) Du\phi dx = -\lim_{\varepsilon \to 0} \int_{u>0} F_{\varepsilon}'(u) Du\phi dx$$

which, again by dominated convergence equals

$$-\int_{u>0} Du\phi dx$$
.

Hence

$$\int Du_+\phi dx = \int_{u>0} Du\phi dx$$

or

$$Du_+ = \chi_{u>0} Du$$

and the statement follows.