HOMEWORK 2, DUE FEBRUARY 9 IN CLASS

Problem 1: a) Let U be open. Prove the inequality

$$
\|D u\|_{L^{2}(U)}^{2} \leq\|u\|_{L^{2}(U)}\|\Delta u\|_{L^{2}(U)}
$$

for $u \in C_{c}^{\infty}(U)$.

Solution: We have that

$$
\int_{U}|D u|^{2} d x=-\int_{U} u \Delta u d x \leq\|u\|_{L^{2}(U)}\|\Delta u\|_{L^{2}(U)}
$$

using Schwarz's inequality.
b) Let U be open, bounded and ∂U be C^{∞}. Prove that the inequality continuous to hold for all $u \in H^{2}(U) \cap H_{0}^{1}(U)$. (Hint: First use a sequence in $C_{c}^{\infty}(U)$ to prove the inequality for $u \in$ $H_{0}^{2}(U)$. Then use an approximating sequence $u_{k} \in C^{\infty}(\bar{U})$ to prove it for $u \in H^{2}(U) \cap H_{0}^{1}(U)$. Note, that the trace theorem is useful in this context.)

Solution: Let $u \in H_{0}^{2}(U)$. There exists $u_{k} \in C_{c}^{\infty}(U)$ convergent to u in $H^{2}(U)$. Because

$$
\int_{U}|D u|^{2} d x=\lim _{k \rightarrow \infty} \int_{U}\left|D u_{k}\right|^{2} d x \leq \lim _{k \rightarrow \infty}\left\|u_{k}\right\|_{L^{2}(U)}\left\|\Delta u_{k}\right\|_{L^{2}(U)}=\|u\|_{L^{2}(U)}\|\Delta u\|_{L^{2}(U)}
$$

the inequality follows for all $u \in H_{0}^{2}(U)$. Now, let $u \in H^{2}(U) \cap H_{0}^{1}(U)$. There exists $u_{k} \in$ $C^{\infty}(\bar{U})$ such that u_{k} converges to u in $H^{2}(U)$. The function u is also in $H_{0}^{1}(U)$ and hence the trace $T u_{k}$ converges to $T u$ in $L^{2}(\partial U)$ which, however, equals to zero a.e. on ∂U. Hence $T u_{k} \rightarrow 0$ in $L^{2}(\partial U)$. Since ∂U is smooth, we may use Gauss's theorem

$$
\int_{U}\left|D u_{k}\right|^{2} d x=-\int_{U} u_{k} \Delta u_{k} d x+\int_{\partial U} u_{k} N \cdot D u_{k} d S
$$

where N is the outward normal. Now

$$
\left|\int_{\partial U} u_{k} N \cdot D u_{k} d S\right| \leq\left\|u_{k}\right\|_{L^{2}(\partial U)}\left\|D u_{k}\right\|_{L^{2}(\partial U)}
$$

Since $u \in H^{2}(U)$ we know that $u_{x_{i}} \in H^{1}(U)$ and hence it has a trace in $L^{2}(U)$. Thus,

$$
\left\|u_{k}\right\|_{L^{2}(\partial U)}\left\|D u_{k}\right\|_{L^{2}(\partial U)} \leq\left\|u_{k}\right\|_{L^{2}(\partial U)}\left\|u_{k}\right\|_{H^{2}(U)}
$$

which converges to 0 as $k \rightarrow \infty$. By Schwarz's inequality as before

$$
\left|-\int_{U} u_{k} \Delta u_{k} d x\right| \leq\left\|u_{k}\right\|_{L^{2}(U)}\left\|\Delta u_{k}\right\|_{L^{2}(U)}
$$

and as $k \rightarrow \infty$ the desired inequality emerges.

Problem 2: Suppose that U is open and connected and that $u \in W^{1, p}(U)$ with

$$
D u=0
$$

a.e. in U. Show that u is constant a.e. in U.

Solution: Consider the domain $U_{\varepsilon}=\{x \in U: \operatorname{dist}(x, \partial U)>\varepsilon\}$. For $x \in U_{\varepsilon}$ consider the function $u_{\varepsilon}(x)=\int \eta_{\varepsilon}(x-y) u(y) d y$ where η_{ε} is a standard molifier. $u_{\varepsilon} \in C^{\infty}\left(U_{\varepsilon}\right)$ and

$$
D u_{\varepsilon}(x)=\int \eta_{\varepsilon}(x-y) D u(y) d y
$$

by the definition of the weak derivative. Sine $D u=0$ a.e., we have that $D u_{\varepsilon}(x)=0$ for all $x \in U_{\varepsilon}$ and hence u_{ε} is constant in U_{ε}. Since $\left\|u_{\varepsilon}-u\right\|_{L^{p}\left(U_{\varepsilon}\right)} \rightarrow 0$ as $\varepsilon \rightarrow 0$, we have that u is constant a.e..

Problem 3: Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{1} function such that F^{\prime} is bounded. Suppose further that $U \subset \mathbb{R}^{n}$ is a bounded domain and that $u \in W^{1, p}(U)$ for some $1 \leq p \leq \infty$. Show that $F(u) \in W^{1, p}(U)$ and that as weak derivatives

$$
F(u)_{x_{i}}=F^{\prime}(u) u_{x_{i}}, i=1, \ldots, n .
$$

(Hint: Use that any sequence that converges in L^{p} has a subsequence that converges pointwise a.e.)

Solution: Let $u \in W^{1, p}(U)$. There exists $u_{k} \in C^{\infty}(U) \cap W^{1, p}(U)$ such that

$$
\left\|u-u_{k}\right\|_{W^{1, p}(U)} \rightarrow 0
$$

as $k \rightarrow \infty$. Now

$$
\left|F\left(u_{k}\right)(x)-F\left(u_{\ell}\right)(x)\right| \leq C\left|u_{k}(x)-u_{\ell}(x)\right|
$$

since F^{\prime} is bounded. Moreover

$$
D F\left(u_{k}\right)(x)=F^{\prime}\left(u_{k}\right)(x) D u_{k}(x) .
$$

From this it follows that for any test function $\phi \in C_{c}^{\infty}(U)$

$$
\int F(u) D \phi d x=\lim _{k \rightarrow \infty} \int F\left(u_{k}\right) D \phi d x=-\lim _{k \rightarrow \infty} \int F^{\prime}\left(u_{k}\right) D u_{k} \phi d x
$$

We may choose a subsequence so that u_{k} tends a.e. to u and hence $F^{\prime}\left(u_{k}\right)$ a.e to $F^{\prime}(u)$. Now

$$
\begin{gathered}
\left|\int\left[F^{\prime}\left(u_{k}\right) D u_{k}-F^{\prime}(u) D u\right] \phi d x\right|=\left|\int\left[F^{\prime}\left(u_{k}\right)-F^{\prime}(u)\right] D u_{k}+F^{\prime}(u)\left[D u_{k}-D u\right] \phi d x\right| \\
\leq C \int\left|F^{\prime}\left(u_{k}\right)-F^{\prime}(u)\right|^{2} \mid \phi d x+\left\|F^{\prime}(u)\right\|_{\infty}\left\|u_{k}-u\right\|_{W^{1, p}(U)}
\end{gathered}
$$

which tends to zero. Hence

$$
\int F(u) D \phi d x=-\int F^{\prime}(u) D u \phi d x
$$

Since U is bounded $F(u) \in L^{p}(U)$ and since $F^{\prime}(u)$ is bounded $F^{\prime}(u) u_{x_{i}} \in L^{p}(U)$ and hence $F(u) \in W^{1, p}(U)$.

Problem 4: Assume that U is bounded. Use Problem 3 and the function

$$
F_{\varepsilon}(z)= \begin{cases}\left(z^{2}+\varepsilon^{2}\right)^{1 / 2}-\varepsilon & \text { if } z \geq 0 \\ 0 & \text { if } z<0\end{cases}
$$

to show that for any function $u \in W^{1, p}(U), u_{+}(x)=\max (u(x), 0)$ is in $W^{1, p}(U)$ and that

$$
D u_{+}= \begin{cases}D u & \text { a.e. on }\{u>0\} \\ 0 & \text { a.e. on }\{u \leq 0\}\end{cases}
$$

Solution: The function F_{ε} is continuously differentiable, in fact its derivative is

$$
F_{\varepsilon}^{\prime}(z)= \begin{cases}\frac{z}{\sqrt{z^{2}+\varepsilon^{2}}} & \text { for } z>0 \\ 0 & \text { for } z \leq 0\end{cases}
$$

which is bounded by 1 and continuous. Moreover, we have that

$$
F_{\varepsilon}(z) \leq|z|
$$

and

$$
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}=\max (z, 0)
$$

Hence by the previous problem, for every $\varepsilon>0 F_{\varepsilon}(u) \in W^{1, p}(U)$ and its weak derivative is given by

$$
D F_{\varepsilon}(u)=F_{\varepsilon}^{\prime}(u) D u .
$$

Hence for any test function ϕ using dominated convergence

$$
\int u_{+} D \phi d x=\lim _{\varepsilon \rightarrow 0} \int F_{\varepsilon}(u) D \phi d x=-\lim _{\varepsilon \rightarrow 0} \int F_{\varepsilon}^{\prime}(u) D u \phi d x=-\lim _{\varepsilon \rightarrow 0} \int_{u>0} F_{\varepsilon}^{\prime}(u) D u \phi d x
$$

which, again by dominated convergence equals

$$
-\int_{u>0} D u \phi d x
$$

Hence

$$
\int D u_{+} \phi d x=\int_{u>0} D u \phi d x
$$

or

$$
D u_{+}=\chi_{u>0} D u
$$

and the statement follows.

