HOMEWORK 4, DUE APRIL 6 IN CLASS

Problem 1: Prove that the sequence $u_k(x) = \sin(kx)$ converges weakly to zero as $k \to \infty$ in $L^2(0,1)$.

Problem 2: Let U be an open, bounded subset of \mathbb{R}^n with smooth boundary. Prove the existence of a nontrivial weak solution $u \in H_0^1(U)$ of

$$\begin{cases} -\Delta u = |u|^{q-1}u & \text{in } U\\ u = 0 & \text{on } \partial U \end{cases}$$

for $1 < q < \frac{n+2}{n-2}$. (Hint: Interpret this equation as the Euler-Lagrange equation of a functional.)

Problem 3: Let U be an open, bounded subset of \mathbb{R}^n with smooth boundary and denote by U_T the set $U \times (0, T]$. In U_T consider the PDE

$$u_t - \Delta u - \varepsilon u_{tt} = 0 \; .$$

Here $\varepsilon > 0$. Show that this PDE is the Euler-Lagrange equation of an energy functional of the form

$$\int_{U_T} dx dt L_{\varepsilon}(Dw, w_t, w, x, t) \; .$$

(Hint: Look for a Lagrangian with an exponential term involving t.)

Problem 4: Let U be an open, bounded subset of \mathbb{R}^2 with smooth boundary and let $\Sigma \subset \mathbb{R}^3$ be the graph of the smooth function $u: U \to \mathbb{R}$. Show that

$$\int_{U} (1+|Du|^2)^{-3/2} \mathrm{det} D^2 u dx$$

depends only on the values of Du on the boundary ∂U . This integral represents the Gauss curvature of the graph Σ .