HOMEWORK 5, DUE APRIL 18 IN CLASS

Problem 1: a) Assume that $n \geq 3$. Find a constant c such that

$$
u(x)=\left(1+|x|^{2}\right)^{\frac{2-n}{2}}
$$

is a solution of the equation

$$
-\Delta u=c u^{\frac{n+2}{n-2}} \text { in } \mathbb{R}^{n}
$$

b) Check that for each $\lambda>0$

$$
u_{\lambda}(x):=\lambda^{\frac{n-2}{2}} u(\lambda x)
$$

is also a solution.
c) Show that

$$
\left\|u_{\lambda}\right\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}=\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)},\left\|D u_{\lambda}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\|D u\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

for each $\lambda>0$ and hence $\left\{u_{\lambda}\right\}$ is not precompact in $L^{2^{*}}\left(\mathbb{R}^{n}\right)$.

Problem 2: Let u be a solution of the semilinear heat equation

$$
u_{t}-\Delta u=f(u) \text { in } \mathbb{R}^{n} \times(0, \infty)
$$

Assume that u and its derivatives go to zero rapidly as $|x| \rightarrow \infty$.
a) Show that

$$
\frac{d}{d t} \int_{\mathbb{R}^{n}} \frac{1}{2}|D u|^{2}-F(u) d x=-\int_{\mathbb{R}^{n}} u_{t}^{2} d x
$$

where $F^{\prime}=f, F(0)=0$.
b) Show that

$$
\frac{d}{d t} \int_{\mathbb{R}^{n}}|x|^{2}\left(\frac{1}{2}|D u|^{2}-F(u)\right) d x=-\int_{\mathbb{R}^{n}} u_{t}^{2}|x|^{2}-2 n F(u)+(n-2)|D u|^{2} d x .
$$

This is a parabolic analogue of the Derrick-Pohozaev identity.

Problem 3: Let $a: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and assume that for any sequence $f_{n} \in L^{2}(0,1)$ that converges weakly to f we have that $a\left(f_{n}\right)$ converges weakly to $a(f)$ in $L^{2}(0,1)$. Show that a must be of the form $a(z)=\alpha z+\beta$ where α and β are constants.

