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Abstract

We review results concerning the problem of ‘Stability of Matter’. Non-relativistic, relativistic quan-

tum mechanics as well as matter interacting with classical fields is discussed and the strategies of the

various proofs of these results is given in some detail. This is followed by a short discussion of the

corresponding problem of matter interacting with the radiation field.

1 Introduction

With the term ‘Stability of Matter’ we summarize the simple observation that all material objects are

extended in space and occupy a volume that is proportional to the mass of the object. The philosophical

speculation as to why this is so goes back to the ancients and it became part of a serious scientific investigation

as the atomic theory of matter took shape. With the discovery of the electron by J.J.Thomson (1899) and

the experiments of Rutherford and his collaborators, Geiger and Marsden (1911), the following picture of

atoms, the constituents of matter, emerged: An atom has a radius of about 10−10m and consists of point

electrons with charge q = −e with e = 1.60×10−19 Coulombs whirling around a nucleus with positive charge

Q = Ze with 1 ≤ Z ≤ 92, depending on which atom in the periodic table one is talking about. The nucleus

has a radius which is several orders of magnitude smaller than the radius of an atom. The electrons and

the nucleus interact with each other through electrostatic forces, i.e., Coulomb’s law, Force = qQ/r2 which

is attractive for opposite charges and repulsive for like charges. Since bulk matter is always very nearly

electrically neutral, the number of electrons, N , and the number of nuclei, K, are related by N = ZK

These facts made a qualitative understanding of matter very difficult. Not only does matter consist of

hardly anything more than empty space, but the singularity of the attractive Coulomb interaction causes

problems. Should it happen that an electron and a nucleus coalesce, there is no force strong enough to
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separate these two particles again. If this process gets repeated indefinitely, then, in the words of Jeans [26]

,“the matter in the universe would tend to shrink into nothing or to diminish indefinitely in size.”

What is the mechanism that prevents this catastrophe, and keeps the electrons so far away from the

nucleus ? One way to resolve this question, as Jeans speculated, would be to assume that the 1/r2 force law

would not hold all the way down to the size of an atom. Rutherford and his collaborators, however, showed

that this was unlikely, since the scattering cross section of the nucleus is, to a high degree of accuracy, that

of a pointlike charge.

Going further, one may ask, how all these atoms conspire to give matter its bulkiness. It is our experience

that two separate liters of a liquid, when poured together, give two liters of the same liquid, but it is not

obvious why this is so since now twice as many molecules interact with each other. It is theoretically

conceivable that the whole volume shrinks and we have less than two liters. This certainly happens when

chemical reactions are involved, but even in that case the shrinking is small and of a different order of

magnitude than the volume the liquid occupies. To bring this into sharper focus, let us concentrate on

the internal energy instead. Suppose, for example, that the energy of a liter of water where proportional

to −N5/3 where N is the number of water molecules. The pouring of water would then have apocalyptic

consequences. The energy difference before and after the pouring is (2N)5/3−2N5/3 which has to be released

in some form and is comparable to the energy set free in a big explosion. The only way to avoid such a

catastrophe is that the energy of bulk matter is proportional to the total number of particles.

This fact is what we call “Stability of Matter”. The proportionality constant depends of course on the type

of particles involved but not on their number.

The theory that finally shaped the above questions into a tractable mathematical problem is quantum

physics. It was developed in a relatively short time span and culminated with the discovery of Schrödinger’s

equation in 1926. This theory showed us that the view of electrons and nuclei as very small particles that

behave according to Newton’s laws of classical mechanics is inadequate for understanding atoms and hence

the constitution of matter.

In this article we review the progress that has been made so far starting with some elementary ob-

servations about the hydrogen atom, then giving the basic arguments for stability of non-relativistic and

relativistic matter without and with magnetic fields. Finally we mention a few results concerning Quantum

Electrodynamics. It is impossible to give all the details in such a condensed form and the rough outline of

the proofs has to suffice.

2 The Hydrogenic atom

To describe quantum mechanics in a ’nutshell’ let us start with Schrödinger’s theory of a ’hydrogenic’ atom.

(In hydrogen, Z = 1 and N = 1; we want to consider N = 1 and arbitrary Z > 0.) We assume the nucleus to

be a static, classical particle located at the origin, having charge Ze. (The nucleus can be considered fixed in

space because its mass is by about a factor of 1800 greater than that of the electron, whose mass we denote

by m.) Thus, it is not a serious approximation to assume that the only quantum mechanical particle is the

electron. According to Born, the states of the electron are described by a complex valued wave function

ψ(x) with |ψ(x)|2 being the probability density of finding the electron at the position x. Hence |ψ(x)|2 must
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be normalized, i.e.,

‖ψ‖22 =
∫

R3
|ψ(x)|2dx = 1 . (2.1)

The quantum mechanical energy E(ψ) of the atom in the state ψ is given by

E(ψ) = T (ψ) + V (ψ) , (2.2)

where

T (ψ) =
~2

2m

∫
R3
|∇ψ(x)|2dx , V (ψ) = −(Ze)2

∫
R3
|x|−1|ψ(x)|2dx (2.3)

is the kinetic energy and potential energy.

Unless stated otherwise we shall adopt units such that the energy is measured in units of 4 Rydbergs. (1

Rydberg= mc2

2 α2 = 13.56eV , c= speed of light, and α = e2/~c = 1/137.04 is the Sommerfeld fine structure

constant). The length is measured in units of ~2/2me2, i.e., half the Bohr radius.

It is useful to note that the kinetic energy and the potential energy have the same dimensions as the

’square of an inverse length’ and an ’inverse length’ respectively.

The energy functional E(ψ) describes the atom in the following way: minimizing the energy over all

normalized functions ψ yields the ground state energy, E0, and the minimizer is the ground state, ψ0.

The fact that the energy functional (2.2) is bounded below is crucial of course. In fact for all functions ψ

that satisfy (2.1) we have that

E(ψ) ≥ −Z2 1
4

= E(ψ0) . (2.4)

where the unique normalized minimizer ψ0 is given by

ψ0(x) = (8π)−1/2e−Z|x|/2 . (2.5)

Although the theory of the Hydrogen atom can be found in any text book on quantum mechanics the

above mentioned facts are by no means trivial and a proper proof uses a certain amount of machinery from

the calculus of variations. It is, therefore, important to understand in simple terms the mechanism that

prevents Jeans’ catastrophe from happening.

Behind (2.4) is the simple intuition, that when we try to squeeze a normalized wave function into a small

region, i.e., when we try to make the potential energy very negative then the variations in the function get

big and the kinetic energy becomes large.

This general fact, that localizing an electron costs kinetic energy is called the uncertainty principle.

There are many different mathematical relations expressing this idea, the most famous one being Heisenberg’s

uncertainty principle, which, however, is not very useful in our context.

The one that can be used for quantitative estimates is Sobolev’s inequality∫
R3
|∇ψ|(x)2dx ≥ S

[∫
R3
|ψ(x)|6dx

]1/3
, (2.6)

where S = 3(π/2)4/3 is the sharp constant.

Applied to the hydrogenic atom we find a lower bound on the energy

S[
∫
ρ3(x)dx]1/3 −

∫
Z

|x|
ρ(x)dx (2.7)

where ρ = |ψ|2 satisfies
∫
ρdx = 1. Simple minimization procedures lead to the minimizer

ρ =
[
Z

|x|
− λ

]
+

(2.8)
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where [· · · ]+ denotes the positive part and λ is a Lagrange multiplier over which one optimizes. The ground

state energy of our functional is

−Z
2

S

(π
2

)4/3

= −1
3
Z2 , (2.9)

(see [30]). Note that this energy is surprisingly close to the actual value of the ground state energy of the

hydrogenic atom. The point here is not the actual calculation but the fact that the Sobolev inequality is a

simple and versatile tool to obtain lower bounds for atomic energies. We shall come back to this point when

we talk about the many body problem.

3 Stability of non-relativistic matter

Schrödinger’s theory goes far beyond a single atom, in fact it is believed to be the ‘true’ theory of non-

relativistic matter if one ignores radiation processes.

We consider bulk matter composed of many nuclei and electrons. Unless mentioned otherwise, the nuclei

will be treated as classical particles, or what is same, as particles that have an infinite mass. The state of

the system is now described by a complex valued wave function Ψ associated with the electrons. It depends

on all the electron coordinates, i.e.,

Ψ = Ψ(x1, σ1; . . . ;xN , σN ) , (3.1)

where the space variables xi range over R3 and the spin variables σi take values in {−1/2, 1/2}. A good

way of thinking about the spin variables is to imagine 2 kinds of ‘electrons’, those with spin −1/2 and those

with spin 1/2. Mathematically, it is often convenient to allow the number of spin states to be an arbitrary

number which we denote by q, then the σ variables can take q different values.

We denote by 〈Ψ,Φ〉 the scalar product on the Hilbert-space L2(R3N ; C2N ) of all these wave functions,

i.e.,

〈Ψ,Φ〉 =
∑

σ1,...,σN

∫
R3
· · ·
∫

R3
Ψ(x1, σ1; . . . ;xN , σN )Φ(x1, σ1; . . . ;xN , σN )d3x1 · · · d3xN (3.2)

We shall assume that Ψ is normalized, i.e.,

‖Ψ‖2 =
∑

σ1,...,σN

∫
R3
· · ·
∫

R3
|Ψ(x1, σ1; . . . ;xN , σN )|2d3x1 · · · d3xN = 1 , (3.3)

interpreting |Ψ(x1, σ1; . . . ;xN , σN )|2 as the probability density of finding N electrons at positions x1, . . . , xN

having spins σ1, . . . , σN .

The dynamics of a system of electrons is governed by a Hamiltonian

H =
N∑

i=1

τi + Vc , (3.4)

which acts on wave functions. Here τi represents the kinetic energy operator acting on the i − th variable.

The standard non-relativistic choice is

τ = −∆ , (3.5)

which is the kinetic energy operator of a non-relativistic electron. Different choices for τ will be discussed

later. Vc is the Coulomb interaction among the particles and is given by

Vc = −
N,K∑

i=1,j=1

Zj

|xi −Rj |
+

N∑
i<j

1
|xi − xj |

+
K∑

i<j

ZiZj

|Ri −Rj |
. (3.6)
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The three terms describe, in succession, the attraction of the nuclei and electrons, the repulsion among the

electrons and the repulsion among the nuclei.

The Schrödinger energy functional for a system of N electrons interacting with K nuclei with charges

Z1, . . . , ZK , which we assume to be fixed at the positions R1, . . . , RK is given by

E(Ψ) = 〈Ψ,HΨ〉 . (3.7)

Note that, so far, the spin variables do not play any dynamical role. They do not appear in the Hamiltonian.

As in the case of the ’hydrogenic’ atom, minimizing E(Ψ) over all normalized wave functions Ψ yields

the ground state energy E0 of the system and the minimizer will be the ground state Ψ0, i.e., the lowest

energy state of this system of matter. Sometimes there may be no ground state, e.g., when there are too

many electrons, but the ground state energy is always defined as the infimum of (3.7) over all normalized

wave functions.

A further crucial ingredient for the description of matter is the Pauli exclusion principle, whose

discovery in 1925 actually preceded quantum physics. It states that two electrons can never be in the same

quantum state or, more precisely:

The wave function Ψ for N electrons (fermions) must be antisymmetric in the indices labeling the parti-

cles, i.e., the wave function changes sign if any two space-spin variables (xj , σj) and (xk, σk) are interchanged.

We denote the Hilbert-space of all such wave functions by

H = ∧NL2(R3; Cq) , (3.8)

the N -fold antisymmetric tensor product of L2(R3; Cq).

Returning to (3.7) two different types of energies can be defined. One by minimizing over all normalized

wave functions and one by minimizing over all normalized wave functions obeying the Pauli exclusion prin-

ciple. The two a very different and the latter is the one realized in nature. It can be shown that the former

is realized by minimizing (3.7) over the normalized symmetric functions (see [30]).

To understand a bit better the effect of the Pauli principle on energies consider a simple Hamiltonian of

the form

H =
N∑

k=1

hk , (3.9)

where hk denotes the operator h acting on the k-th particle coordinate. Denote by φj the normalized

eigenfunctions of h and by λj the corresponding eigenvalues ordered according to size, λ1 ≤ λ2 ≤ · · · . The

smallest energy for the operator H, ignoring the Pauli principle is Nλ1 and the eigenfunction is ΠN
i φ1(xi).

If the Pauli principle is taken into account we have to ’fill up the energy levels’, only q electrons can be in

the same state. The keep the energy as small as possible we put the first q elecrons electron into the ground

state of h, φ1. The Pauli principle then forces us to put the next q electron into a different state and the

second eigenvalue is energywise the best. Continuing this way we obtain for the energy

q
A∑

j=1

λj +RλA+1 . (3.10)

where N = qA+R, R < q and R,A are integers. The corresponding eigenfunctions must be linear combina-

tions of ΠN
j=1φj(xπ(j), σπ(j)) where π is any permutation of N objects and the antisymmetry forces the wave
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function to be thus a constant times the determinant of the matrix φj(xi) for 1 ≤ i, j ≤ N . Normalizing

this function yields the Slater determinant

1√
N !

det(φj(xi, σi)) . (3.11)

Loosely speaking, the Pauli exclusion principle introduces a repulsive interaction between electrons in

the sense that no two particles are allowed in the same state. The consequences of the exclusion principle

are far reaching. The ground state will be degenerate in general and the ground state wave function will

not be symmetric under rotations and as a consequence atoms and molecules and ultimately matter acquire

shapes.

As an aside, note that, although the spin does not enter in a dynamical fashion it has a subtle effect. If

we decompose the total wave function as a sum of products of functions that depend only on the spin and

functions that only depend on the space variables then the symmetry type of the spin function will determine

the symmetry type of the space function since each product has to be antisymmetric. That, in turn, will

reflect the amount of energy ’stored’ in the space function since the Hamiltonian acts only on the space part

of the function. In particular, if we choose q = N the spin has no effect on the energy since one can write

the ground state as the product of an antisymmetric spin function and a symmetric function in the space

variables. As we have noted before the minimization problem among the symmetric wave functions yields

the same answer as the unrestricted minimization.

To summarize, the ground state energy of the system described by (3.4 - 3.6), taking the Pauli–principle

into consideration can be found by the minimization problem

E0 = inf{〈Ψ,HΨ〉 : ‖Ψ‖ = 1,Ψ ∈ H} , (3.12)

where H is given by (3.8). Finding E0 and the corresponding minimizer is completely out of reach by any

means. Instaed one concentrates on deriving some fundamental principles and features for the ground state

energy and the corresponding wave function such as the Stability of Matter which we explain next.

We saw before that the ground state energy of hydrogen is a finite number. It is not very difficult to see

that the ground state energy of a quantity of bulk matter is also finite, but nothing has been said about the

dependence of the energy on the number of particles.

Following Lieb [30], it is convenient to distinguish between two notions of stability.

• A system is stable of the first kind if E0 > −∞.

• A system is stable of the second kind if E0 ≥ C(N +K) where C is independent of N and K. Recall

that N and K are the number of electrons and the number of nuclei.

THEOREM 3.1 (Stability of Matter). The Coulomb Hamiltonian (3.4, 3.5, 3.6) on the Hilbert space (3.8)

is stable of the second kind. More precisely

E0 ≥ −q2/30.123N

1 + 1.769

√∑K
k=1 Z

7/3
k

N

2

. (3.13)

This theorem was first proved by Dyson and Lenard [11, 12]. and subsequently another proof was found

by Federbush [15]. A completely new way of understanding this result was discovered by Lieb and Thirring

which also led to a considerable improvement of the constant A [44]. The discoveries of Lieb and Thirring
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are fundamental for the further development of the subject. Before doing that let us mention briefly two

further implications of Theorem 3.1. It implies that matter (in its ground state) is bulky ,i.e.,√
〈|r2|〉 ≥ const.N1/3 , (3.14)

where
√
〈|r2|〉 is the variance of the position operator,(see [45]). A second, highly nontrivial consequence, is

that the thermodynamic functions exist. This was shown by Lieb and Lebowitz [35].

It has to be emphasized that the Pauli exclusion principle is crucial for stability of the second kind. In

the absence of the Pauli principle the ground state energy E0 ≤ −const.N5/3 (see [29]). The inclusion of

dynamical nuclei does not change that picture in any essential way. The following theorem is due to Dyson

[13].

THEOREM 3.2 (Bosonic matter is unstable). The ground state energy E0 of 2N charged bosons, N with

charge +1 and N with charge −1 satisfies

E0 ≤ −CN7/5 . (3.15)

The peculiar power 7/5 has been shown to be exact in (see [7]). Moreover, in [13], Dyson gives a precise

value for the constant C which he conjectures to be the correct value. This has been recently proved in [43].

As was mentioned before, Theorem 3.1 has a surprisingly simple and conceptually appealing proof due

to Lieb and Thirring [44] and since it is the starting point for further developments we reproduce the main

ideas below. The key to understanding the theorem is the relation between this problem and Thomas -

Fermi theory.

This theory was invented by Thomas and independently by Fermi [21], [50]. Its fundamental idea is to

replace the high dimensional Schrödinger equation by a new, low dimensional, problem that involves only

the single particle density ρΨ(x) defined by

ρΨ(x) =
N∑

i=1

∑
σ1,...,σN

∫
R3
· · ·
∫

R3
|Ψ(x1, σ1; . . . ;x, σi;xN , σN )|2d3x1 · · · d3x̂id

3xN , (3.16)

where x̂i indicates that we do not integrate over the variable xi. This function is now a function on R3 and

can be thought of as the charge density of the N electrons. If there is only one electron, then |ψ|2 = ρΨ. Note

that
∫
ρΨ = N . The goal is to find a lower bound of the quantum mechanical energy (3.7) of the N -particle

system in terms of a functional that has only the single particle density as an independent variable. In

what follows, the function ρ is not necessarily the one particle density of an N particle wave function. The

Thomas Fermi functional is given by

E(ρ) = γ
5
3
q2/3

∫
R3

ρ5/3(x)dx−
K∑

j=1

Zj

∫
R3

ρ(x)
|x−Rj |

dx+
1
2

∫
R3

∫
R3

ρ(x)ρ(y)
|x− y|

dxdy +
K∑

i<j

ZiZj

|Ri −Rj |
. (3.17)

We assume that ρ is nonnegative and ∫
R3

ρ(x)dx = λ (3.18)

where λ is a fixed number not necessarily an integer. We denote by

e0(λ,R1, . . . , RK) = inf{E(ρ) : ρ(x) ≥ 0,
∫
R3

ρ(x)dx = λ} (3.19)
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the ground state energy of the Thomas-Fermi functional. Note that the positions of the nuclei are fixed.

They just enter as parameters. The only unfamiliar term is the ‘kinetic energy term’

γ
5
3
q2/3

∫
R3

ρ5/3(x)dx (3.20)

where γ is some constant. To understand where this term comes from consider a cubic box of size L and

calculate the ground state energy of the kinetic energy of N fermions in this box. The energy levels are given

by the eigenvalues of the Laplace operator with Dirichlet boundary condition in that box which are

π2(n2
1 + n2

2 + n2
3)

L2
(3.21)

Filling up the energy levels for N fermions having spin q yields for N large

const.q−2/3

(
N

L3

)
L3 = const.q−2/3ρ5/3L3 . (3.22)

The functional (3.17) was completely investigated by Lieb and Simon [42] (see also [32] for a review).

They proved among many other things that for fixed positions of the nuclei a minimizer exists provided

λ ≤
∑K

i=1 Zi. Otherwise there is no minimizer. If λ ≥
∑K

i=1 Zi then

e0(λ,R1, . . . , RK) = e0(
K∑

i=1

Zi, R1, . . . , RK) . (3.23)

Moreover, the energy e0 is a monotone decreasing function of λ. Further, by numerical computations one

finds that the energy of a single neutral atom with nuclear charge Z is given by

e0(Z) = −3.678
Z7/3

γ
. (3.24)

So far we kept the nuclei fixed. How do we have to choose the positions of the nuclei for the total energy

to be minimal? The surprising answer is that there is no binding in T-F theory. This has been discovered by

Teller and later proved rigorously by Lieb and Simon using potential theoretic arguments. In other words

the energy of a system of electrons and nuclei is smallest if the atoms are infinitely far apart and neutral.

This has the immediate consequence that matter in TF theory is stable,i.e.,

e0(λ,R1, . . . , RK) ≥ −3.678
K∑

j=1

Z
7/3
j /γ . (3.25)

The next problem is to show that the Thomas - Fermi functional is indeed a lower bound to the true

N -particle Schrödinger functional (3.7).

The first step is given by the following theorem first proved in [44]. It is a Sobolev type inequality for

the electron wave function that takes into account the Pauli exclusion principle.

THEOREM 3.3 (Lieb-Thirring inequality). Let Ψ be the wave function of N fermions of spin q. Then

T (Ψ) ≥ 3
5
Cq−2/3

∫
R3

ρ
5/3
Ψ (x)dx , (3.26)

where C ≥ (3π2)2/3.
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The constant given here has been found in [25] and is an improvement over the one given in [44]. The

main feature of this inequality is that the right side is extensive, that is, if we think of having a wave function

Ψ whose single particle density is distributed in N equal disjoint bumps across space then the right side of

(3.26) is proportional to N .

This inequality can be derived from the following inequality, also proved for the first time in [44] and

[45].

THEOREM 3.4. Consider the Schrödinger operator

−∆− U(x) (3.27)

where U is a positive function. Denote the negative eigenvalues by −λ1 < −λ2 ≤ . . . . Then∑
j

λj ≤ L1

∫
U(x)5/2dx , (3.28)

and ∑
j

λ
1/2
j ≤ L2

∫
U(x)2(x)dx . (3.29)

The sharp constants for these two inequalities are not known but there exist the bounds

L1 ≤
2

15π2
, L2 ≤

1
8π

. (3.30)

Over the years, the constants have been improved notably by Lieb, [34]. The values given here are taken

from [25] using the method of matrix valued potential pioneered by Laptev and Weidl [28],(see also [4]).

The other deeply quantum mechanical term in (3.7) is the Coulomb repulsion for the electrons,

C(Ψ) := 〈Ψ
∑

1≤i<j≤N

|xi − xj |−1Ψ〉 . (3.31)

One would like to bound this term by the Coulomb repulsion of the one particle density

D(ρΨ) :=
1
2

∫
R3

∫
R3

ρΨ(x)ρΨ(y)
|x− y|

dxdy . (3.32)

This, however, is false. The quantum mechanical Coulomb repulsion is of the order of (N2−N)/2 while the

term in (3.32) is of the order N2/2.

The following theorem was shown in [40].

THEOREM 3.5. For any normalized N -particle wave function Ψ the quantum mechanical Coulomb repul-

sion satisfies

C(Ψ) ≥ D(ρΨ)− 1.68
∫

R3
ρ
4/3
Ψ (x)dx . (3.33)

This results holds irrespective of the symmetry type of Ψ.

Using the elementary inequality

a4/3 ≤ εa5/3 +
1
4ε
a

yields ∫
R3
ρ
4/3
Ψ (x)dx ≤ ε

∫
R3
ρ
5/3
Ψ (x)dx+

1
4ε

∫
R3
ρΨ(x)dx = ε

∫
R3
ρ
5/3
Ψ (x)dx+

1
4ε
N (3.34)
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which leads to a small change in the constant in front of the T - F kinetic term.

The energy of attraction between the electrons and the nuclei in (3.7) is given by

−〈Ψ,
N∑

i=1

K∑
j=1

Zj

|xi −Rj |
Ψ〉 = −

K∑
j=1

Zj

∫
R3

ρΨ(x)
|x−Rj |

dx . (3.35)

Collecting all these terms one finds that the Thomas - Fermi energy functional is indeed a lower bound.

Using the bound (3.25) and optimizing over the various constants one obtains the bound displayed in in

Theorem 3.1.

In recent years the focus of this research area has expanded to incorporate more physical effects. Bulk

matter interacts with magnetic fields and, if Z is large, binding energies can become large enough so that

relativistic effects have to be included. In the next section we shall outline what is known about relativistic

Coulomb systems.

4 Stability of relativistic matter

One of the important problems is the fusion of Einstein’s special (and general relativity) with Quantum

Mechanics. Up to now we do not have a mathematically rigorously formulated, relativistically invariant

Quantum Theory of interacting particles. There exist very successful perturbative prescriptions to compute

physical quantities, e.g., in Quantum Electrodynamics, but there is no theory that allows one to draw

mathematically rigorous conclusions. The following is only a caricature of relativistic Quantum Mechanics

but there is hope that it contains certain features that will persist in the theory to be. One of them is that

in the ultra relativistic regime the kinetic energy and the potential energy scale the same way and hence are

of the same order. Thus, the problem lies outside the realm of perturbation theory. Another good reason

for considering this problem is that the relativistic stability estimate can be used to solve a host of other

interesting problems.

The model consists of simply replacing the kinetic energy τ = −∆ in (3.4) by its relativistic counterpart
√
−∆ + 1 − 1. Here we choose units in which the energy is measured in units of the rest energy of the

electron mc2, the length we measure in units of the Compton wave length divided by 2π, i.e., ~/mc. The

Schrödinger Hamiltonian (3.4) is then changed to

N∑
i=1

τi + αVc (4.1)

where, as usual α ≈ 1/137.04 is the fine structure constant and

τi =
√
−∆i + 1− 1 (4.2)

acting on the coordinates of the i-th particle.

The formal definition of the kinetic energy is via the Fourier transform, i.e.,

〈ψ,
√
−∆ + 1ψ〉 =

∫
R3

√
4π2k2 + 1|ψ̂(k)|2dk , (4.3)

where the Fourier transform is given by

ψ̂(k) =
∫
R3

e−2πik·xψ(x)dx . (4.4)
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To see the main effect of this new kinetic energy term, the case of the hydrogenic atom is instructive. We

have to minimize

〈ψ, (
√
−∆ + 1− 1)ψ〉 − Zα〈ψ, 1

|x|
ψ〉 (4.5)

over all normalized functions ψ. If we replace ψ(x) by the scaled function ψλ(x) = λ3/2ψλ(x) a little

computation shows that the normalization is unchanged and that

〈ψλ, (
√
−∆ + 1− 1)ψλ〉 − Zα〈ψλ,

1
|x|
ψλ〉 = λ{〈ψ, (

√
−∆ + (1/λ)2 − 1/λ)ψ〉 − Zα〈ψ, 1

|x|
ψ〉} . (4.6)

From this we see that Zα cannot be too big for otherwise we could make the energy as negative as we

please by letting λ go to ∞. Thus we are left with only two alternatives. For all ψ, either,

〈ψ,
√
−∆ψ〉 − Zα〈ψ, 1

|x|
ψ〉 ≥ 0 , (4.7)

or otherwise the infimum of the energy is −∞. Note that we lost the mass in the scaling procedure. It is

irrelevant for the stability problem, but it will determine the energy once the problem is shown to be stable.

We shall ignore it from now on.

In short, the essence of this relativistic theory is that the kinetic and the potential energy have the same

dimensions. The whole stability problem of the relativistic atom is captured in the estimate (4.7) and leads

immediately to the question for what values of Zα such an estimate holds. The following has been shown

by various authors: [27],[24], [51]

THEOREM 4.1. The estimate (4.7) holds if and only if Zα ≤ 2/π.

Thus, recalling that α ≈ 1/137, atoms with a nuclear charge greater than 87 are not stable in this model.

Inequality (4.7) is the relativistic version of the uncertainty principle∫
R3
|∇ψ(x)|2dx ≥ 1

4

∫
R3

|ψ(x)|2

|x|2
dx . (4.8)

Next, we consider the full theory. We return to the Hamiltonian H in (4.1) but we replace the kinetic

energy τ by
√
−∆. For simplicity we set all Zj ’s = Z. Let us emphasize that the stability problem for this

Hamiltonian is simply to show that

inf〈Ψ,HΨ〉 ≥ 0 , (4.9)

where the infimum is taken over all Ψ ∈ H, that is, wave functions that obey the Pauli principle. In

relativistic theories there is no difference between stability of the first kind and stability of the second kind.

The Hamiltonian of any relativistic system has to be positive. Clearly, a necessary condition for stability is

that Zα ≤ 2/π. However, the following dimensional analysis shows that this is not the only condition that is

needed for stability of relativistic systems. Consider, for simplicity, a single electron in the field of K nuclei

of the same charge Z which we allow to be any nonnegative real number, not necessarily an integer. Imagine

the electron and these nuclei to be confined to a box of size L. The kinetic energy will be of size 1/L, the

Coulomb attraction will be of size −ZαK/L and the repulsion of the nuclei will be of the order Z2K2α/2L.

If we set Z = 1/K we get, by adding up these contributions for the total energy,

α

2L
(2/α− 1) , (4.10)
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which can be made as negative as we please (by letting L go to zero) as soon as α > 1/2. Thus, a necessary

condition for stability to hold is that the fine structure constant be not too large. The above argument was

made rigorous by Daubechies and Lieb [9] where stability for single electron systems was proved. Stability of

the full relativistic system was shown for the first time by Conlon [6]. His result was subsequently improved

by de la Llave-Fefferman [10]. A next big step is due to Lieb-Yau [46] who showed that stability holds for

all Zα ≤ 2/π. Their theorem is:

THEOREM 4.2. Fix Zαπ ≤ 2. Then the relativistic Hamiltonian (4.1) (with τ =
√
−∆) is stable provided

that α ≤ 1/94.

Note that the constants fall within the physical range. The following result is proved in [39]. Although

it does not hold up to the critical values, it yields a somewhat better range of parameters for which stability

holds. More importantly, it also holds for matter interacting with magnetic fields which will be important

in the next section. Its proof proceeds via a Thomas - Fermi type theory, very much in line with the non -

reltativistic case.

THEOREM 4.3 (Stability of relativistic systems). For all antisymmetric, normalized wave functions Ψ

associated with particles having q spin states

N∑
j=1

(Ψ,
√
−∆Ψ) + α(Ψ, VcΨ) ≥ 0 (4.11)

provided that
π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 ≤ 1

α
. (4.12)

Naively, relativistic T-F theory would have the kinetic energy term

3
4
γ

∫
ρ4/3(x)dx , (4.13)

which can be easily seen by a dimensional argument. Likewise, it is also very easy to see that such a term

cannot bound the Coulomb singularity and hence the problem has to suitably modified. We shall consider

instead a functional of the form

E(ρ) = β(
√
ρ,
√
−∆

√
ρ) +

3
4
γ

∫
ρ4/3(x)dx (4.14)

+α

[
−Z

∑
k

∫
ρ(x)

|x−Rk|
dx+D(ρ, ρ) + Z2

∑
k<l

1
|Rk −Rl|

]
. (4.15)

where β and γ are constants. Again, we note that all the terms have the same dimension and hence the

ground state energy of this theory is either minus infinity or zero, but for sufficiently large β and γ and

sufficiently small α one expects stability. This is indeed the case as the following theorem taken from [39]

shows.

THEOREM 4.4 (Relativistic T - F stability). The functional E is stable if β ≥ πZα/2 and γ ≥ 4.8158Z2/3α.

The size of the Coulomb potential of a collection of nuclei and electron has two sources. It is singular

close to the nuclei and it can also be large because there are many nuclei. To disentangle these two issues

the notion of Voronoi cells with respect to a collection of nuclei is very useful. Define

Γj = {x ∈ R3 : |x−Rj | < |x−Ri|, i 6= j} . (4.16)
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Clearly Γj is open and it easily seen to be convex. Further we define the nearest neighbor distance between

the nuclei by

min
i 6=j

|Ri −Rj | (4.17)

and set

Dj =
mini 6=j |Ri −Rj |

2
. (4.18)

One can describe the Voronoi cell Γj in more geometric terms. Each plane Pk bisecting the segment con-

necting Rk and Rj defines an open half space Hk that contains the point Rj . The Voronoi cell Γj is then

formed by the intersection of the half spaces Hk. In particular the ball Bj centered at Rj with radius Dj is

a subset of Γj .

The following lemma is proved in [46].

LEMMA 4.5 (Removing the Coulomb singularity).

(√
ρ,
√
−∆

√
ρ
)
≥ 2
π

K∑
j=1

∫
Bj

ρ(x)
(

1
|x−Rj |

− 1
Dj

Y (
|x−Rj |
Dj

)
)
dx . (4.19)

The function Y (r) is given by

Y (r) =
2

π(1 + r)
+

1 + 3r2

π(1 + r2)
ln(1 + r)− 1− r2

πr(1 + r2)
ln(1− r)− 4r

π(1 + r2)
ln r ≤ 1.56712 . (4.20)

The important point for us is that

4π
∫
Y (r)4r2dr < 7.6245 . (4.21)

This lemma says, in essence that the first term in the functional (4.14) can be used to remove the Coulomb

singularity in each ball defining the Voronoi cell.

Next we have to deal with the Coulomb potential due to all the nuclei that an electron feels at the point

x. It is given by

W (x) = Z
∑

k

1
|x−Rk|

. (4.22)

Define

δ(x) = min{|x−Ri| : 1 ≤ i ≤ K} , (4.23)

and set

Φ(x) = W (x)− Z

δ(x)
. (4.24)

Thus, for x ∈ Γj , Φ(x) is the potential at the point x due to all the nuclei outside of the Voronoi cell Γj .

The nucleus at the point Rj does not contribute. Imagine now a charge distribution µ(dx) interacting with

the potential Φ(x). This distribution can be a measure and does not have to be positive. Certainly, the total

energy of all the charge distributions, i.e., including the one that generates the potential Φ(x) is nonnegative.

(Note that there is no infinite self energy term from the nuclei.) Much more, however can be said and that

is the content of the next lemma proven in [46].

LEMMA 4.6 (Electrostatic inequality). For any charge distribution µ

D(µ, µ)−
∫

Φ(x)µ(dx) + Z2
∑
k<l

1
|Rk −Rl|

≥ Z2

8

∑
j

1
Dj

. (4.25)
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The point about this lemma is the positive term on the right side of the inequality.

Proof of Theorem 4.4. Set β = πZα/2 and use Lemma 4.5 to ‘pull the Coulomb tooth’ and find that

E(ρ) ≥ 3
4
γ

∫
ρ4/3(x)dx+ (4.26)

α

[
−
∫
ρ(x)U(x)dx+D(ρ, ρ) + Z2

∑
k<l

1
|Rk −Rl|

]
. (4.27)

where

U(x) = Z
∑

k

1
|x−Rk|

(1− χBk
) +

π

2
χBk

1
Dk

Y (
|x−Rk|
Dk

) . (4.28)

Recall that

Φ(x) = Z
∑

k

1
|x−Rk|

− Z

δ(x)
(4.29)

which takes the value

Z
∑
k 6=j

1
|x−Rk|

(4.30)

in the Voronoi cell Γj . Note that in the Voronoi cell Γk the difference

U(x)− Φ(x) =
Z

|x−Rk|
(1− χBk

) +
π

2
χBk

1
Dk

Y (
|x−Rk|
Dk

) (4.31)

and hence we split U(x) as

U(x) = [U(x)− Φ(x)] + Φ(x) (4.32)

and the lower bound (4.26) takes the form

E1(ρ) + αE2(ρ) (4.33)

where

E1(ρ) =
3
4
γ

∫
ρ4/3(x)dx− Zα

∫
ρ(x)[U(x)− Φ(x)]dx (4.34)

and

E2(ρ) = D(ρ, ρ)−
∫

Φ(x)ρ(x)dx+ Z2
∑
k<l

1
|Rk −Rl|

. (4.35)

The second functional is bounded below by
Z2

8

∑
k

1
Dk

(4.36)

by the electrostatic inequality Lemma 4.6. The first term we bound using Hölder’s inequality by

3
4
γ‖ρ‖4/3

4/3 − Zα‖ρ‖4/3‖U − Φ‖4 (4.37)

and optimizing over X = ‖ρ‖4/3 yields

− (Zα)4

4γ3

∫
[U(x)− Φ(x)]4dx (4.38)

= − (Zα)4

4γ3

∑
k

(
π

2
)4
∫

Bk

D−4
k Y (

|x−Rk|
Dk

)4dx+
∫

Γk−Bk

1
|x−Rk|4

dx . (4.39)
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Since the Voronoi cell Γk lies on one side of the mid plane defined by the nearest neighbor nucleus we get an

upper bound on the last term by integrating over the outside of the ball Bk and then subtract the integral

of the half space whose z-coordinate is greater or equals Dk. Thus∫
Γk−Bk

1
|x−Rk|4

dx ≤ 4π
Dk

− 1
Dk

∫ ∞

1

dz

∫ ∞

0

2πr
(r2 + z2)2

dr =
3π
Dk

. (4.40)

Hence we get that

E1(ρ) ≥ − (Zα)4

4γ3

[
(
π

2
)44π

∫ 1

0

Y (r)4r2dr + 3π
]∑

k

1
Dk

(4.41)

= − (Zα)4

4γ3

[
7.6245(

π

2
)4 + 3π

]∑
k

1
Dk

(4.42)

Adding the bounds yields in total

E(ρ) ≥
[
− (Zα)4

4γ3

[
7.6245(

π

2
)4 + 3π

]
+ α

Z2

8

]∑
k

1
Dk

(4.43)

and the condition on γ stated in the theorem yields the result.

The next step is to relate the full quantum mechanical problem to the relativistic Thomas - Fermi

problem. We need to explain how the first two kinetic energy terms in the relativistic Thomas - Fermi

functional emerge. The first term follows from the inequality

〈Ψ,
N∑

j=1

√
−∆Ψ〉 ≤ (

√
ρΨ,

√
−∆

√
ρΨ) , (4.44)

whose proof can be found in [6]. It has to emphasized that this inequality holds for any many-body wave

function. The Pauli exclusion principle is not relevant in this case. The second term in (4.14) is the analog

appearing in the Lieb - Thirring inequality but for the relativistic kinetic energy. This Lieb - Thirring type

inequaltity is due to Daubechies [8]

LEMMA 4.7. Assume that U(x) ≥ 0 is in L4(R3). Then on L2(R3,Cq)

Tr[
√
−∆− U ]− ≤ qLD

∫
U(x)4dx (4.45)

where the constant LD is bound above by 0.0245. Moreover, for any normalized, antisymmetric wave function

of N particles with q spin states

〈Ψ,
N∑

j=1

√
−∆jΨ〉 ≥

3
4

(
1

4LD

)1/3

q−1/3

∫
R3
ρ
4/3
Ψ (x)dx , (4.46)

where
3
4

(
1

4LD

)1/3

≥ 1.63 . (4.47)

Proof of Theorem 4.2. With

β =
π

2
Zα (4.48)

and

γ =
4
3

[
1.63q−1/3(1− π

2
Zα)− 1.68α

]
(4.49)
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we see that that for any antisymmetric wave function of N particles with q spin states

〈Ψ, [
N∑

j=1

√
−∆j + αVc]Ψ〉 ≥ E(ρΨ) (4.50)

where we have used, in addition, Theorem 3.5. By Theorem 4.4 we have stability provided that

π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 ≤ 1

α
. (4.51)

Relativistic Stability of Matter is one of the main theorems in this whole field of research. Apart from the

question of “good constants”, Theorem 4.3 is a stronger theorem than the one concerning non-relativistic

matter as the following shows.

First note that by Schwarz’s inequality

(Ψ,
√
−∆Ψ) ≤ ‖Ψ‖(Ψ,−∆Ψ)1/2 . (4.52)

Hence, since Ψ is normalized

N1/2

 N∑
j=1

(Ψ,−∆Ψ)

1/2

≥
N∑

j=1

(Ψ,−∆Ψ)1/2 ≥
N∑

j=1

(Ψ,
√
−∆Ψ) (4.53)

From this we get that for any a > 0

N∑
j=1

(Ψ,−∆Ψ) ≥ 2
a

N∑
j=1

(Ψ,
√
−∆Ψ)−N

1
a2

. (4.54)

Thus,
N∑

j=1

(Ψ,−∆Ψ) + (Ψ, VcΨ) ≥ 2
a

N∑
j=1

(Ψ,
√
−∆Ψ) + (Ψ, VcΨ)−N

1
a2

(4.55)

≥ −N
a2

(4.56)

provided that a is chosen such that

π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 ≤ 2

a
, (4.57)

obviously we do best choosing the equality sign. For Z = 1 and q = 2 we get

2
a

= 5.6611 (4.58)

and obtain the lower bound

−8.012N . (4.59)

Note that the bound depends only on N and not on K.
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5 Interaction with magnetic fields

So far the spin of the electron did not play any significant role in the stability problem. This situation

changes drastically if one considers the interaction of an electron with a magnetic field B(x). We consider

in the following the magnetic field to be static and with finite field energy

1
8πα2

∫
R3
|B(x)|2dx . (5.1)

We use again units explained at the beginning of Section 2 which leads to the appearance of α in the

expression for the field energy.

The magnetic field B(x) is divergence free on all of R3 and hence we can always find a ’Vector potential’

A(x) with the property that

curlA(x) = B(x) . (5.2)

Clearly A is only specified up to a gauge transformation A→ A+∇χ for some function χ.

The electron interacts with the magnetic field according to Lorenz’s force law Force = eB × v where v

is the velocity of the particle. In Quantum Mechanics one describes this interaction, analogous to classical

mechanics by replacing the momentum p = −i∇ by p− eA. The kinetic energy is now given by

(p− eA)2 . (5.3)

As usual we set the charge of the electron e = −1.

The first result for matter interacting with radiation is due to Avron - Herbst - Simon [1] and, indepen-

dently, Combes - Schrader - Seiler [5], who consider the Hamiltonian (3.4) but with

τ = (−i∇+A(x))2 . (5.4)

Their result is that the system is stable of the second kind, independent of the magnetic field and with the

same constant as the one furnished by the Lieb - Thirring proof without the magnetic field. The result

hinges on the diamagnetic inequality which says that the Greens function

|[(−i∇+A(x)) + λ2]−2(x, y)| ≤ (−∆ + λ2)−2(x, y) =
1
4π

e−λ|x−y|

|x− y|
. (5.5)

where λ ≥ 0 is a constant. From this one deduces the Lieb-Thirring inequality (3.26) with the same constants

independent of the magnetic field.

The spin of the electron introduces an additional complication. The electron behaves to some extent

like a magnetized needle, that is, it has a magnetic moment µ. The coupling between this moment and the

magnetic field is given by −µ · B. Recall that the electron wave function is given by a ’spinor’, i.e., a two

component wave function. It is best to think of it as a vector

ψ =

(
ψ1

ψ2

)
(5.6)

The magnetic moment is now given by (ψ, σψ)(x), where σ are the three Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (5.7)
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and ( , ) denotes the inner product in C2.

The part of the energy describing the interaction of the electron with the magnetic field is then given by

the Pauli operator

τ = (p+A)2 + σ ·B = [σ · (p+A)]2 , (5.8)

which is a positive matrix valued operator. The second equality is an easy calculation. The model under

consideration is the Hamiltonian (3.4) with τ as above. The ground state energy E(B) of this system (the

Pauli principle is always included) will depend on the particle numbers N,K, the position of the nuclei, R,

and their charges, Z, and it will be a complicated function of the magnetic field. It is known [2] that when the

magnetic field gets large, then E(B) gets (negative) large too. This is the effect of the σ ·B–term. Producing

large magnetic fields, however, requires energy and the energy stored in a magnetic field is proportional to

1
8π

∫
R3
|B(x)|2dx . (5.9)

Thus, one possibility is to include the magnetic field as a dynamical variable and define stability of the

second kind by requiring

E(B) +
1

8πα2

∫
R3
|B(x)|2dx ≥ −C(Z)(N +K) . (5.10)

Let us emphasize the requirement that the constant C(Z) must not depend on the number of particles, the

position of the nuclei and not on the magnetic field either.

Despite being non-relativistic this problem has a behavior similar to the relativistic one in that the fine

structure constant and the nuclear charges have to be small enough in order for stability to hold. This may

seem surprising, since the kinetic energy scales like the square of an inverse length whereas the potential

energy scales only like an inverse length. From those facts one would expect stability irrespective of the

values of α and Z.

The ‘hydrogenic atom’ offers a first clue [22], [36]. In that case the problem is to find a lower bound to

the functional

E(ψ,A) = 〈σ · (p−A)ψ, σ · (p−A)ψ〉 − Z〈ψ| 1
|x|
|ψ〉+ ε

∫
R3
|B(x)|2dx . (5.11)

Here ε = 1/(8πα2). Note that B = curlA and that we minimize over A as well as the spinor ψ. Also recall

that we have used (5.8) to display the interaction of the electron with the magnetic field as a complete

square. In this form the kinetic energy and the σ ·B term are not separate anymore.

It was shown in [49] (see also [14] for further examples) that there exist zero modes of the three

dimensional Dirac equation

σ · (−i∇−A(x))ψ = 0 , (5.12)

that is to say there exists a spinor ψ(x) and A(x) such that ψ(x) is square summable and the field B =

curlA(x) has finite energy. A simple exercise in scaling shows that if we set

ψλ(x) = λ
3
2ψ(λx) , (5.13)

and

Aλ(x) = λA(λx) , (5.14)
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then ψλ and Aλ still satisfy the three dimensional Dirac equation (5.12). If we choose ψλ and Aλ as trial

functions in (58) then we obtain

E(ψλ, Aλ) = λ
[
−Z〈ψ| 1

|x|
|ψ〉+ ε

∫
R3
|B(x)|2dx

]
, (5.15)

which becomes arbitrarily negative provided

Zα2 >
1
8π

∫
R3 |B(x)|2dx
〈ψ, 1

|x|ψ〉
. (5.16)

In a certain sense this is a breakdown of the uncertainty principle. If we squeeze the wave function and the

magnetic field simultaneously, the kinetic energy does not necessarily become large.

The collapse for a large fine structure constant can be understood in a manner similar to the relativistic

case and we shall not repeat the argument here.

As far as the full problem (5.10) is concerned, Fefferman [16, 17, 18] was the first to provide a proof,

however, he required that the fine structure constant had to be sufficently small. This was improved in

[38] where a simple proof of (5.10) was given requiring that α ≤ 0.041. In particular it was found that for

α = 1/137 stability holds up to Z = 1050.

We shall follow this argument, but using the improved constants in the eigenvalue bounds of Theorem

3.4 as well as Theorem 4.3.

THEOREM 5.1. The ground state energy of N electrons interacting with K fixed nuclei each having charge

Z, i.e., the ground state energy E0(Z,B,N,K) of the Hamiltonian

H =
N∑

j=1

[σ · (−i∇j +A(xj))]2 + Vc (5.17)

acting on antisymmetric functions in ∧N
j=1L

2(R3; C2), satisfies the estimate

E0(Z,B,N,K) +
1

8πα2

∫
B(x)2dx ≥ −C(N +K) (5.18)

provided that
3
√

3
32α2

>
π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 . (5.19)

In particular for α = 1/137 and q = 2 there is stability for Z < 1728. for Z close to zero there is stability

provided that α < 0.396q−1/6 which yields for q = 2 the bound α < 0.352.

We see that in this theorem the parameter ranges contain the physical values.

What is the implication of such a result? We usually think of a magnetic field as external, that is,

the magnetic field is produced by some external currents and not by the currents that are generated inside

the piece of matter itself. The above result, however, holds irrespective of whether the magnetic field is

external or not. This means that we allow the electrons to interact with the magnetic field that they create

themselves. Thus, one must view the above model as a semiclassical caricature of non-relativistic quantum

electrodynamics, that is as a ’theory’ that incorporates the fields as dynamical quantities that fully interact

with matter.
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Proof of Theorem 5.1. We follow closely [38]

Using Theorem 4.3 we eliminate the Coulomb potential, i.e.,

H ≥
N∑

j=1

{
[σj · (pj +A(xj))]2 −D|pj +A(xj)|

}
(5.20)

where D satisfies the estimate

D ≥ π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 . (5.21)

Thus we have reduced the problem to one of a single particle operator. Denote by −e1 ≤ −e2 ≤ the

negative eigenvalues of

h = [σ · (p+A(x))]2 −D|p+A(x)| , (5.22)

then we have that

H ≥ −q
[ N

q ]∑
i=1

ei (5.23)

where [N
q ] denote the smallest integer greater or equal to N

q . Obviously

a =
∫ ∞

0

χa>e(e)de (5.24)

and hence

q

[ N
q ]∑

i=1

ei = q

∫ ∞

0

[ N
q ]∑

i=1

χei>e(e)de (5.25)

= q

∫ ∞

0

min
(
Ne(h), [

N

q
]
)
de , (5.26)

where Ne(h) is the number of eigenvalues of h below −e.
Now, recalling that the system must have a certain natural energy scale if it is stable at all, we denote

this unknown energy scale by µ. Thus, we rewrite (5.26) as

q

∫ µ

0

min
(
Ne(h), [

N

q
]
)
de+ q

∫ ∞

µ

min
(
Ne(h), [

N

q
]
)
de , (5.27)

and bound it from above by

q [
N

q
]µ+ q

∫ ∞

µ

Ne(h)de (5.28)

≤ (N + q)µ+ q

∫ ∞

µ

Ne(h)de (5.29)

The first term should estimate the energy of the system, while the second term should be compensated

by the field energy. Thus, we have to relate this term to something that has the same dimensionality as the

field energy. This is achieved by a sliding energy scale; for all e ≥ µ we have

[σ · (p+A(x))]2 ≥ µ

e
[σ · (p+A(x))]2 ≥ µ

e
(p+A(x))2 − µ

e
σ ·B . (5.30)

Further

|p+A(x)| ≤ D

2e
|p+A(x)|2 +

e

2D
. (5.31)
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Hence,

h ≥
(
µ

e
− D2

2e

)
|p+A(x)|2 − µ

e
σ ·B − e

2
=: h′e =:

1
e
k − e

2
, (5.32)

where

k =
(
µ− D2

2

)
|p+A(x)|2 − µσ ·B (5.33)

and

Ne(h) ≤ Ne(h′e) ≤ Ne2/2(k) . (5.34)

Now, ∫ ∞

µ

Ne(h)de ≤
∫ ∞

0

Ne2/2(k)de =
√

2
∫ ∞

0

Ne2(k)de (5.35)

=
√

2
∑

j

λ
1/2
j , (5.36)

where −λj are the negative eigenvalues of the operator k.

Using the Lieb-Thirring inequality (3.29) for the square root of the eigenvalues leads to the estimate

∑
j

λ
1/2
j ≤ 2µ2

(
µ− D2

2

)−3/2 1
8π

∫
B(x)2dx . (5.37)

This naive application of the Lieb-Thirring inequality leads to a constant that is by a factor of two larger.

This is due to the spin which forces us to count each eigenvalue twice. It is not known whether this factor

2 can be omitted if the bounds (3.29) are applied to our problem. (See [48] for another method where the

factor of 2 can indeed be removed.)

Optimizing the above expression over µ yields

µ = 2D2

which yields the bound

H ≥ −(N + q)2D2 − 32D
3
√

3
1
8π

∫
B(x)2d3x . (5.38)

Thus, we get the stability condition 1/α2 > 32D/3
√

3, i.e.,

3
√

3
32α2

>
π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 . (5.39)

6 Interaction with the radiation field

As indicated in the last chapter, stability of matter interacting with magnetic fields has implications for

matter interacting with the radiation field. We discuss first the results for non-relativistic quantum electro-

dynamics (QED), where the charges are treated as non - relativistic particles and the (relativistic) radiation

field is quantized. The Hamiltonian, including spin in suitable units, is

H =
N∑

j=1

[σ · (−i∇+
√
αA(x)]2 + αVc +Hf . (6.1)
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The field energy Hf is

Hf =
2∑

λ=1

∫
R3
|k|a∗λ(k)aλ(k)dk (6.2)

and the A-field is

A(x) =
1
2π

2∑
λ=1

∫
R3

dk√
|k|
χΛ(k)ελ(k)

[
eik·xaλ(k) + e−ik·xa∗λ(k)

]
. (6.3)

The coefficients a and a∗ are now operators, the destruction and creation operators. They satisfy the

commutation relations

[aµ(p), a∗ν(q)] = δµ,νδ(p− q) (6.4)

and the a’s commute among each other as well as the a∗’s. The vectors ελ(k), λ = 1, 2 are the polarization

vectors. Together with k/|k| they form an orthonormal triple for every k 6= 0. The function χλ is a smooth

function whose support is in a ball of radius Λ. This function imposes an ultraviolet cutoff on the vector

potential A(x). This is essential; without a cutoff the Hamiltonian (6.1) does not make any sense.

The Hilbert space of the photons is the Fock - space F . This space is defined as

F = ⊕∞
n=0 ⊗n

s L
2(R3; C2) , (6.5)

where ⊗n
s denotes the n-fold symmetric tensor product. Hence, the Hilbert space for the operator (6.1) is

H = ∧NL2(R3; C2)⊗F (6.6)

The Hamiltonian (6.1) describes matter interacting with radiation at least at low energies. Unfortunately

one has to impose an ultraviolet cutoff Λ to make the theory finite. It turns out that the physical quantities

one calculates in practical applications depend weakly on Λ. So far, however, one does not know how to

remove this cutoff.

Stability of the second kind for the Hamiltonian (6.1) was proved by Bugliaro, Fröhlich and Graf [3]. We

state here another result due to Fefferman, Fröhlich and Graf [19, 20].

THEOREM 6.1. For any value of α, for any value of Z and any value of the cutoff, there exists a constant

C(Z,α) so that on H
H ≥ −C(Z,α)(Λ + 1)M . (6.7)

The fact that no condition on the fine structure is required stems from the ultraviolet cutoff. This cutoff

does not allow for the scaling of the magnetic field which was crucial for understanding the instabilities.

While the proof of this theorem is involved, it is not hard to describe one of the difficulties. The field

energy Hf cannot be compared easily with the classical field energy
∫
B(x)2dx which is in our context also

an operator. The reason is that in passing from the classical field energy to the quantized field energy one

has to normal order the operators, i.e., bring all the creation operators to the left and all the destruction

operators to the right. Thus if we write B(x) = D(x) +D∗(x) where D contains only destruction operators

and D∗ only creation operators then∫
R3
B(x)2dx =

∫
R3

[
D2(x) +D∗2(x) + 2D∗(x)D(x) + [D(x), D∗(x)]

]
dx . (6.8)

However,

[D(x), D∗(x)] = − 1
4π2

∫
R3
χ2

Λ(k)|k|dk (6.9)
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which is not integrable with respect to x. The way out of this apparent dilemma is to consider a stronger

version of the stability of matter problem (5.10) where the field energy is replaced by∫
C

B(x)2dx (6.10)

where C is a set that is a union of balls whose center are at the position of the nuclei and whose radius is

of the order of Λ−1, the ultraviolet cutoff. Clearly, this expression does not have the problems mentioned

above, i.e., the commutator when integrated over this set C yields a finite contribution.

Relativistic quantum electrodynamics is, in the perturbative realm, a very successful theory for describing

certain interactions of charges particles with photons. One has not succeeded, however, to go beyond

perturbation theory, in particular there is no Hamiltonian that describes the interaction of matter and

radiation. There have been attempts at creating certain caricatures. The true equation governing the

motion of a single electron is the Dirac equation. For a hydrogenic atom interacting with a meagnetic field

the Dirac equation reads

D(A) := α · (−i∇+
√
αA(x)) +mβ − Zα

|x|
(6.11)

with

α =

(
0 σ

σ 0

)
, β =

(
I 0

0 −I

)
,

Note that the Hilbert space is L2(R3; C4). The spectrum of the Dirac operator extends all the way to −∞
and hence it makes little sense to try to define stability. While the positive energy states are electrons states,

the negative energy states are associated with positrons and to turn this into a feasible model requires second

quantization of the electron positron field. As mentioned before there is so far no consistent theory of this

kind.

Another possibility taken by physicists is to find an approximate theory for the case where pair creation

is neglected. It is natural to interpret the positive energy states of the Dirac operator as electrons and

the negative energy states as positrons. Clearly, this depends strongly on what kind of Dirac operator

one considers. One way, which is standard in the physics literature is to define the electron space as the

positive spectral subspace of the the free Dirac operator. Denote by P+
j the projection onto the positive

spectral subspace of the free Dirac operator acting on the coordinates of the j-th particle. Next we define

the N -particle Hilbert space

H = P+ ∧N
j=1 L

2(R3; C4) (6.12)

where P+ =
∏N

j=1 P
+
j . It is easy to see that the this space is anti-symmetric under exchange of particle

labels. For classical magnetic fields one defines the Hamiltonian

H(A(x)) = P+ [Dj(A)− αVc]P+ +
1
8π

∫
|B(x)|2dx . (6.13)

Note that this Hamiltonian is no longer gauge invariant and hence one expects some problems with it. This

is indeed the case as was shown in [41]. We quote their result in the version of [23]. They show that for any

fixed α > 0 there exists a field A(x) and a constant C(A) so that

inf
Ψ,‖Ψ‖=1,γ,δ>0

〈Ψ,H(γA(δx))Ψ〉 = −∞ . (6.14)

Thus there is no stability of any kind.
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If one decides to keep gauge invariance one has to consider the spectral projection P+
j,A of the Dirac

operator including the magnetic field. This leads to a Hilbert space that depends on the vector potential A

HA = P+
A ∧N

j=1 L
2(R3; C4) (6.15)

where as before P+
A =

∏N
j=1 P

+
j,A. Likewise the Hamiltonian for a classical field is now given by

H(A(x)) = P+
A [Dj(A)− αVc]P+

A +
1
8π

∫
|B(x)|2dx . (6.16)

It was shown in [41] that for classical fields and sufficiently small values of α and Zα this Hamiltonian is

stable on the Hilbert space HA.

Next let us consider the same model, except that the magnetic field is quantized, i.e., we consider the

Hamiltonian

Hphys
N = P+H ′

NP
+ . (6.17)

where

H ′
N =

N∑
i=1

Di(A) + αVc +Hf . (6.18)

The vector potential A(x) is now given by (6.3). Again, we have to decide which Hilbert space to take. One

possibility is

H = P+ ∧N
j=1 L

2(R3; C4)P+ ⊗F (6.19)

where P+ is again defined using the positive spectral subspace of the free Dirac operator. It is shown in [23]

that for this model there is no stability of the second kind.

Defining the electrons as the states in the positive spectral subspace of the Dirac operator including the

quantized radiation field leads to the Hilbert space

H = P+
A ∧N

j=1 L
2(R3; C4)⊗FP+

A (6.20)

where one should take note that since the A field acts nontrivially on the Fock space, so does the projection

P+
A . The separation of electrons and photons is now lost.

The following theorem is proved in [37].

THEOREM 6.2 (Relativistic Quantum electrodynamic Stability). Assume that Z and α are such that

there is a solution κ and ε ≥ 0 to the three inequalities

κ ≥ max{64.5, πZ} (6.21)

(κα)2 < 1− ε ≤ 1 (6.22)
(1− ε)2α

(1− ε− κ2α2)3/2
≤ 1

8π(0.060)
(6.23)

Then Hphys
N in (6.17) with P+ replaced by P+

A , is bounded below by

Hphys
N ≥ +

√
ε mN − 18Λ

π
KC3

2 , (6.24)

where

C4
2 =

N

K

6
√

1− ε+ (α/2)(
√

2Z + 2.3)2

27/2π
. (6.25)

In particular, Z ≤ 42 is allowed when α = 1/137.
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Note that κ is an auxiliary quantity that does not show up in the actual estimates. The proof of this

theorem although somewhat involved follows closely the one given in [41]. The main difference is that in

order to deal with the commutator (6.9) the problem is reduced to a relativistic problem where the kinetic

energy is localized in the vicinity of the nuclei.

Thus, depending on the various parameters there are various possibilites of stability and instability,

stability of the second kind. These are all listed in the table below taken from [37].

Electrons defined by projection onto the positive

subspace of D(0), the free Dirac operator

Classical or quantized field Classical or quantized field

without cutoff Λ with cutoff Λ

α > 0 but arbitrarily small. α > 0 but arbitrarily small.

Without Coulomb Instability of Instability of

potential αVc the first kind the second kind

With Coulomb Instability of Instability of

potential αVc the first kind the second kind

Electrons defined by projection onto the positive

subspace of D(A), the Dirac operator with field

Classical field with or without cutoff Λ

or quantized field with cutoff Λ

Without Coulomb The Hamiltonian is positive

potential αVc

Instability of the first kind when either

With Coulomb α or Zα is too large

potential αVc Stability of the second kind when

both α and Zα are small enough

One can see from these considerations that the requirement that matter be stable poses restrictions for

some of the models. Some require that certain coupling constants be small while others require that the

theory be modified.
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